🐚 🧠 TuskLang Bash @learn Function Guide

Bash Documentation

🧠 TuskLang Bash @learn Function Guide

"We don't bow to any king" – Learning is your configuration's intelligence.

The @learn function in TuskLang is your machine learning and adaptive intelligence powerhouse, enabling dynamic learning, pattern recognition, and intelligent decision-making directly within your configuration files. Whether you're optimizing performance, predicting trends, or adapting to user behavior, @learn provides the cognitive capabilities to make your configurations truly intelligent.

🎯 What is @learn?

The @learn function provides machine learning capabilities in TuskLang. It offers: - Pattern recognition - Learn from data patterns and trends - Predictive analytics - Make predictions based on historical data - Adaptive optimization - Optimize settings based on performance data - Anomaly detection - Identify unusual patterns or outliers - Recommendation systems - Provide intelligent recommendations

📝 Basic @learn Syntax

Simple Learning

[simple_learning]

Learn from performance data

performance_model: @learn("response_time", @query("SELECT response_time FROM api_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 HOUR)")) optimal_timeout: @learn.predict("response_time", {"load": @env("CURRENT_LOAD")})

Learn from user behavior

user_preferences: @learn("user_behavior", @query("SELECT action, timestamp FROM user_actions WHERE user_id = " + @env("USER_ID"))) recommended_action: @learn.recommend("user_behavior", {"context": "dashboard"})

Pattern Recognition

[pattern_recognition]

Learn traffic patterns

traffic_pattern: @learn("traffic_pattern", @query("SELECT hour, request_count FROM traffic_logs WHERE date >= DATE_SUB(NOW(), INTERVAL 7 DAY)")) peak_hours: @learn.peak_hours("traffic_pattern")

Learn error patterns

error_pattern: @learn("error_pattern", @query("SELECT error_type, count FROM error_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 24 HOUR)")) common_errors: @learn.common_patterns("error_pattern")

Predictive Analytics

[predictive_analytics]

Predict system load

load_prediction: @learn.predict("system_load", { "time": @date("H"), "day_of_week": @date("N"), "current_load": @shell("uptime | awk '{print $10}' | cut -d',' -f1") })

Predict resource usage

memory_prediction: @learn.predict("memory_usage", { "current_memory": @shell("free -m | awk 'NR==2{print $3}'"), "active_users": @query("SELECT COUNT(*) FROM active_sessions") })

🚀 Quick Start Example

#!/bin/bash
source tusk-bash.sh

cat > learn-quickstart.tsk << 'EOF' [learning_demo]

Learn from system performance

$performance_data: @query("SELECT response_time, cpu_usage, memory_usage FROM performance_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 HOUR)") performance_model: @learn("system_performance", $performance_data)

Predict optimal settings

current_cpu: @shell("top -bn1 | grep 'Cpu(s)' | awk '{print $2}' | cut -d'%' -f1") current_memory: @shell("free | grep Mem | awk '{printf \"%.2f\", $3/$2 * 100.0}'")

optimal_settings: @learn.predict("system_performance", { "cpu_usage": $current_cpu, "memory_usage": $current_memory })

[user_learning]

Learn user preferences

$user_actions: @query("SELECT action, page, duration FROM user_actions WHERE user_id = " + @env("USER_ID", "1")) user_model: @learn("user_preferences", $user_actions)

Get recommendations

recommended_pages: @learn.recommend("user_preferences", {"context": "navigation"}) recommended_features: @learn.recommend("user_preferences", {"context": "features"})

[anomaly_detection]

Learn normal patterns

$normal_data: @query("SELECT value, timestamp FROM metrics WHERE created_at >= DATE_SUB(NOW(), INTERVAL 7 DAY)") normal_pattern: @learn("normal_behavior", $normal_data)

Detect anomalies

current_value: @query("SELECT value FROM metrics ORDER BY created_at DESC LIMIT 1") is_anomaly: @learn.detect_anomaly("normal_behavior", $current_value) EOF

config=$(tusk_parse learn-quickstart.tsk)

echo "=== Learning Demo ===" echo "Performance Model: $(tusk_get "$config" learning_demo.performance_model)" echo "Optimal Settings: $(tusk_get "$config" learning_demo.optimal_settings)"

echo "" echo "=== User Learning ===" echo "User Model: $(tusk_get "$config" user_learning.user_model)" echo "Recommended Pages: $(tusk_get "$config" user_learning.recommended_pages)" echo "Recommended Features: $(tusk_get "$config" user_learning.recommended_features)"

echo "" echo "=== Anomaly Detection ===" echo "Normal Pattern: $(tusk_get "$config" anomaly_detection.normal_pattern)" echo "Is Anomaly: $(tusk_get "$config" anomaly_detection.is_anomaly)"

🔗 Real-World Use Cases

1. Performance Optimization

[performance_optimization]

Learn optimal database connection pool size

$db_performance_data: @query(""" SELECT connection_pool_size, avg_response_time, max_concurrent_connections, error_rate FROM database_performance WHERE created_at >= DATE_SUB(NOW(), INTERVAL 7 DAY) """)

db_optimization_model: @learn("database_performance", $db_performance_data)

Predict optimal pool size

current_load: @query("SELECT COUNT(*) FROM active_connections") optimal_pool_size: @learn.predict("database_performance", { "current_load": $current_load, "expected_concurrent_users": @env("EXPECTED_USERS", "100") })

Apply learned optimization

@if($optimal_pool_size != @env("CURRENT_POOL_SIZE"), { "action": "update_pool_size", "new_size": $optimal_pool_size, "reason": "learned_optimization" }, "no_change_needed")

2. User Behavior Analysis

[user_behavior]

Learn user interaction patterns

$user_interaction_data: @query(""" SELECT user_id, page_visited, time_spent, actions_performed, session_duration FROM user_interactions WHERE created_at >= DATE_SUB(NOW(), INTERVAL 30 DAY) """)

user_behavior_model: @learn("user_behavior", $user_interaction_data)

Predict user engagement

current_user: @env("CURRENT_USER_ID") user_engagement_score: @learn.predict("user_behavior", { "user_id": $current_user, "recent_activity": @query("SELECT COUNT(*) FROM user_actions WHERE user_id = " + $current_user + " AND created_at >= DATE_SUB(NOW(), INTERVAL 7 DAY)") })

Personalized recommendations

personalized_content: @learn.recommend("user_behavior", { "user_id": $current_user, "context": "homepage", "engagement_level": $user_engagement_score })

3. Resource Usage Prediction

[resource_prediction]

Learn resource usage patterns

$resource_data: @query(""" SELECT hour, cpu_usage, memory_usage, disk_io, network_traffic, active_users FROM resource_metrics WHERE created_at >= DATE_SUB(NOW(), INTERVAL 14 DAY) """)

resource_model: @learn("resource_usage", $resource_data)

Predict resource needs

current_hour: @date("H") current_day: @date("N") current_users: @query("SELECT COUNT(*) FROM active_sessions")

predicted_usage: @learn.predict("resource_usage", { "hour": $current_hour, "day_of_week": $current_day, "active_users": $current_users })

Proactive scaling

scaling_needed: @validate.greater_than($predicted_usage.cpu_usage, 80) scaling_action: @if($scaling_needed, { "action": "scale_up", "reason": "predicted_high_load", "target_cpu": $predicted_usage.cpu_usage }, "no_scaling_needed")

4. Anomaly Detection and Alerting

[anomaly_detection]

Learn normal system behavior

$normal_metrics: @query(""" SELECT response_time, error_rate, cpu_usage, memory_usage, disk_usage FROM system_metrics WHERE created_at >= DATE_SUB(NOW(), INTERVAL 30 DAY) AND error_rate < 0.01 """)

normal_behavior_model: @learn("normal_behavior", $normal_metrics)

Detect anomalies in real-time

current_metrics: { "response_time": @query("SELECT AVG(response_time) FROM api_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 5 MINUTE)"), "error_rate": @query("SELECT COUNT() 1.0 / (SELECT COUNT(*) FROM api_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 5 MINUTE)) FROM api_logs WHERE status_code >= 400 AND created_at >= DATE_SUB(NOW(), INTERVAL 5 MINUTE)"), "cpu_usage": @shell("top -bn1 | grep 'Cpu(s)' | awk '{print $2}' | cut -d'%' -f1"), "memory_usage": @shell("free | grep Mem | awk '{printf \"%.2f\", $3/$2 * 100.0}'"), "disk_usage": @shell("df -h / | awk 'NR==2{print $5}' | cut -d'%' -f1") }

anomaly_detected: @learn.detect_anomaly("normal_behavior", $current_metrics)

Alert on anomalies

@if($anomaly_detected, { "alert": "anomaly_detected", "severity": "high", "metrics": $current_metrics, "timestamp": @date("Y-m-d H:i:s") }, "system_normal")

🧠 Advanced @learn Patterns

Multi-Model Learning

[multi_model_learning]

Learn multiple aspects of system behavior

$models: { "performance": @learn("performance", @query("SELECT * FROM performance_logs")), "security": @learn("security", @query("SELECT * FROM security_logs")), "user_behavior": @learn("user_behavior", @query("SELECT * FROM user_actions")), "resource_usage": @learn("resource_usage", @query("SELECT * FROM resource_metrics")) }

Combined intelligence

system_intelligence: @learn.combine($models, { "weights": { "performance": 0.3, "security": 0.2, "user_behavior": 0.3, "resource_usage": 0.2 } })

Make intelligent decisions

intelligent_action: @learn.decide("system_intelligence", { "current_state": $current_metrics, "available_actions": ["scale_up", "scale_down", "alert", "optimize"] })

Continuous Learning

[continuous_learning]

Implement continuous learning

$learning_config: { "update_frequency": "1h", "retention_period": "90d", "min_data_points": 1000 }

Update models periodically

model_update_needed: @learn.should_update("performance_model", $learning_config) @if($model_update_needed, { "action": "update_model", "model": "performance_model", "new_data": @query("SELECT * FROM performance_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 HOUR)") }, "model_current")

Adaptive learning rate

learning_rate: @learn.adaptive_rate("performance_model", { "accuracy": @learn.accuracy("performance_model"), "data_freshness": @learn.data_age("performance_model") })

Ensemble Learning

[ensemble_learning]

Create ensemble of models

$ensemble_models: [ @learn("linear_model", $performance_data), @learn("neural_network", $performance_data), @learn("random_forest", $performance_data) ]

Ensemble prediction

ensemble_prediction: @learn.ensemble_predict($ensemble_models, { "method": "weighted_average", "weights": [0.4, 0.3, 0.3] })

Model performance comparison

model_performance: @learn.compare_models($ensemble_models, { "test_data": @query("SELECT * FROM performance_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 DAY)") })

🛡️ Security & Performance Notes

- Data privacy: Ensure sensitive data is anonymized before learning - Model security: Protect learned models from unauthorized access - Performance impact: Monitor computational overhead of learning operations - Data quality: Validate input data quality for reliable learning - Model validation: Regularly validate model accuracy and performance - Bias detection: Monitor for bias in learned patterns and predictions

🐞 Troubleshooting

- Insufficient data: Ensure adequate data points for reliable learning - Model accuracy: Monitor and improve model accuracy over time - Performance issues: Optimize learning algorithms for better performance - Data drift: Detect and handle changes in data patterns - Memory usage: Monitor memory consumption of learning models

💡 Best Practices

- Start simple: Begin with simple learning models and gradually increase complexity - Validate models: Regularly test and validate learned models - Monitor performance: Track learning model performance and accuracy - Handle edge cases: Account for unusual data patterns and outliers - Document models: Document learning models and their purposes - Regular updates: Update models with fresh data regularly

🔗 Cross-References

- @ Operator Introduction - @cache Function - @query Function - Performance Optimization - Machine Learning Integration

---

Master @learn in TuskLang and bring artificial intelligence to your configurations. 🧠