🐚 🧠 TuskLang Bash @learn Function Guide
🧠 TuskLang Bash @learn Function Guide
"We don't bow to any king" – Learning is your configuration's intelligence.
The @learn function in TuskLang is your machine learning and adaptive intelligence powerhouse, enabling dynamic learning, pattern recognition, and intelligent decision-making directly within your configuration files. Whether you're optimizing performance, predicting trends, or adapting to user behavior, @learn provides the cognitive capabilities to make your configurations truly intelligent.
🎯 What is @learn?
The @learn function provides machine learning capabilities in TuskLang. It offers: - Pattern recognition - Learn from data patterns and trends - Predictive analytics - Make predictions based on historical data - Adaptive optimization - Optimize settings based on performance data - Anomaly detection - Identify unusual patterns or outliers - Recommendation systems - Provide intelligent recommendations📝 Basic @learn Syntax
Simple Learning
[simple_learning]
Learn from performance data
performance_model: @learn("response_time", @query("SELECT response_time FROM api_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 HOUR)"))
optimal_timeout: @learn.predict("response_time", {"load": @env("CURRENT_LOAD")})Learn from user behavior
user_preferences: @learn("user_behavior", @query("SELECT action, timestamp FROM user_actions WHERE user_id = " + @env("USER_ID")))
recommended_action: @learn.recommend("user_behavior", {"context": "dashboard"})
Pattern Recognition
[pattern_recognition]
Learn traffic patterns
traffic_pattern: @learn("traffic_pattern", @query("SELECT hour, request_count FROM traffic_logs WHERE date >= DATE_SUB(NOW(), INTERVAL 7 DAY)"))
peak_hours: @learn.peak_hours("traffic_pattern")Learn error patterns
error_pattern: @learn("error_pattern", @query("SELECT error_type, count FROM error_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 24 HOUR)"))
common_errors: @learn.common_patterns("error_pattern")
Predictive Analytics
[predictive_analytics]
Predict system load
load_prediction: @learn.predict("system_load", {
"time": @date("H"),
"day_of_week": @date("N"),
"current_load": @shell("uptime | awk '{print $10}' | cut -d',' -f1")
})Predict resource usage
memory_prediction: @learn.predict("memory_usage", {
"current_memory": @shell("free -m | awk 'NR==2{print $3}'"),
"active_users": @query("SELECT COUNT(*) FROM active_sessions")
})
🚀 Quick Start Example
#!/bin/bash
source tusk-bash.shcat > learn-quickstart.tsk << 'EOF'
[learning_demo]
Learn from system performance
$performance_data: @query("SELECT response_time, cpu_usage, memory_usage FROM performance_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 HOUR)")
performance_model: @learn("system_performance", $performance_data)Predict optimal settings
current_cpu: @shell("top -bn1 | grep 'Cpu(s)' | awk '{print $2}' | cut -d'%' -f1")
current_memory: @shell("free | grep Mem | awk '{printf \"%.2f\", $3/$2 * 100.0}'")optimal_settings: @learn.predict("system_performance", {
"cpu_usage": $current_cpu,
"memory_usage": $current_memory
})
[user_learning]
Learn user preferences
$user_actions: @query("SELECT action, page, duration FROM user_actions WHERE user_id = " + @env("USER_ID", "1"))
user_model: @learn("user_preferences", $user_actions)Get recommendations
recommended_pages: @learn.recommend("user_preferences", {"context": "navigation"})
recommended_features: @learn.recommend("user_preferences", {"context": "features"})[anomaly_detection]
Learn normal patterns
$normal_data: @query("SELECT value, timestamp FROM metrics WHERE created_at >= DATE_SUB(NOW(), INTERVAL 7 DAY)")
normal_pattern: @learn("normal_behavior", $normal_data)Detect anomalies
current_value: @query("SELECT value FROM metrics ORDER BY created_at DESC LIMIT 1")
is_anomaly: @learn.detect_anomaly("normal_behavior", $current_value)
EOFconfig=$(tusk_parse learn-quickstart.tsk)
echo "=== Learning Demo ==="
echo "Performance Model: $(tusk_get "$config" learning_demo.performance_model)"
echo "Optimal Settings: $(tusk_get "$config" learning_demo.optimal_settings)"
echo ""
echo "=== User Learning ==="
echo "User Model: $(tusk_get "$config" user_learning.user_model)"
echo "Recommended Pages: $(tusk_get "$config" user_learning.recommended_pages)"
echo "Recommended Features: $(tusk_get "$config" user_learning.recommended_features)"
echo ""
echo "=== Anomaly Detection ==="
echo "Normal Pattern: $(tusk_get "$config" anomaly_detection.normal_pattern)"
echo "Is Anomaly: $(tusk_get "$config" anomaly_detection.is_anomaly)"
🔗 Real-World Use Cases
1. Performance Optimization
[performance_optimization]
Learn optimal database connection pool size
$db_performance_data: @query("""
SELECT
connection_pool_size,
avg_response_time,
max_concurrent_connections,
error_rate
FROM database_performance
WHERE created_at >= DATE_SUB(NOW(), INTERVAL 7 DAY)
""")db_optimization_model: @learn("database_performance", $db_performance_data)
Predict optimal pool size
current_load: @query("SELECT COUNT(*) FROM active_connections")
optimal_pool_size: @learn.predict("database_performance", {
"current_load": $current_load,
"expected_concurrent_users": @env("EXPECTED_USERS", "100")
})Apply learned optimization
@if($optimal_pool_size != @env("CURRENT_POOL_SIZE"), {
"action": "update_pool_size",
"new_size": $optimal_pool_size,
"reason": "learned_optimization"
}, "no_change_needed")
2. User Behavior Analysis
[user_behavior]
Learn user interaction patterns
$user_interaction_data: @query("""
SELECT
user_id,
page_visited,
time_spent,
actions_performed,
session_duration
FROM user_interactions
WHERE created_at >= DATE_SUB(NOW(), INTERVAL 30 DAY)
""")user_behavior_model: @learn("user_behavior", $user_interaction_data)
Predict user engagement
current_user: @env("CURRENT_USER_ID")
user_engagement_score: @learn.predict("user_behavior", {
"user_id": $current_user,
"recent_activity": @query("SELECT COUNT(*) FROM user_actions WHERE user_id = " + $current_user + " AND created_at >= DATE_SUB(NOW(), INTERVAL 7 DAY)")
})Personalized recommendations
personalized_content: @learn.recommend("user_behavior", {
"user_id": $current_user,
"context": "homepage",
"engagement_level": $user_engagement_score
})
3. Resource Usage Prediction
[resource_prediction]
Learn resource usage patterns
$resource_data: @query("""
SELECT
hour,
cpu_usage,
memory_usage,
disk_io,
network_traffic,
active_users
FROM resource_metrics
WHERE created_at >= DATE_SUB(NOW(), INTERVAL 14 DAY)
""")resource_model: @learn("resource_usage", $resource_data)
Predict resource needs
current_hour: @date("H")
current_day: @date("N")
current_users: @query("SELECT COUNT(*) FROM active_sessions")predicted_usage: @learn.predict("resource_usage", {
"hour": $current_hour,
"day_of_week": $current_day,
"active_users": $current_users
})
Proactive scaling
scaling_needed: @validate.greater_than($predicted_usage.cpu_usage, 80)
scaling_action: @if($scaling_needed, {
"action": "scale_up",
"reason": "predicted_high_load",
"target_cpu": $predicted_usage.cpu_usage
}, "no_scaling_needed")
4. Anomaly Detection and Alerting
[anomaly_detection]
Learn normal system behavior
$normal_metrics: @query("""
SELECT
response_time,
error_rate,
cpu_usage,
memory_usage,
disk_usage
FROM system_metrics
WHERE created_at >= DATE_SUB(NOW(), INTERVAL 30 DAY)
AND error_rate < 0.01
""")normal_behavior_model: @learn("normal_behavior", $normal_metrics)
Detect anomalies in real-time
current_metrics: {
"response_time": @query("SELECT AVG(response_time) FROM api_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 5 MINUTE)"),
"error_rate": @query("SELECT COUNT() 1.0 / (SELECT COUNT(*) FROM api_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 5 MINUTE)) FROM api_logs WHERE status_code >= 400 AND created_at >= DATE_SUB(NOW(), INTERVAL 5 MINUTE)"),
"cpu_usage": @shell("top -bn1 | grep 'Cpu(s)' | awk '{print $2}' | cut -d'%' -f1"),
"memory_usage": @shell("free | grep Mem | awk '{printf \"%.2f\", $3/$2 * 100.0}'"),
"disk_usage": @shell("df -h / | awk 'NR==2{print $5}' | cut -d'%' -f1")
}anomaly_detected: @learn.detect_anomaly("normal_behavior", $current_metrics)
Alert on anomalies
@if($anomaly_detected, {
"alert": "anomaly_detected",
"severity": "high",
"metrics": $current_metrics,
"timestamp": @date("Y-m-d H:i:s")
}, "system_normal")
🧠 Advanced @learn Patterns
Multi-Model Learning
[multi_model_learning]
Learn multiple aspects of system behavior
$models: {
"performance": @learn("performance", @query("SELECT * FROM performance_logs")),
"security": @learn("security", @query("SELECT * FROM security_logs")),
"user_behavior": @learn("user_behavior", @query("SELECT * FROM user_actions")),
"resource_usage": @learn("resource_usage", @query("SELECT * FROM resource_metrics"))
}Combined intelligence
system_intelligence: @learn.combine($models, {
"weights": {
"performance": 0.3,
"security": 0.2,
"user_behavior": 0.3,
"resource_usage": 0.2
}
})Make intelligent decisions
intelligent_action: @learn.decide("system_intelligence", {
"current_state": $current_metrics,
"available_actions": ["scale_up", "scale_down", "alert", "optimize"]
})
Continuous Learning
[continuous_learning]
Implement continuous learning
$learning_config: {
"update_frequency": "1h",
"retention_period": "90d",
"min_data_points": 1000
}Update models periodically
model_update_needed: @learn.should_update("performance_model", $learning_config)
@if($model_update_needed, {
"action": "update_model",
"model": "performance_model",
"new_data": @query("SELECT * FROM performance_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 HOUR)")
}, "model_current")Adaptive learning rate
learning_rate: @learn.adaptive_rate("performance_model", {
"accuracy": @learn.accuracy("performance_model"),
"data_freshness": @learn.data_age("performance_model")
})
Ensemble Learning
[ensemble_learning]
Create ensemble of models
$ensemble_models: [
@learn("linear_model", $performance_data),
@learn("neural_network", $performance_data),
@learn("random_forest", $performance_data)
]Ensemble prediction
ensemble_prediction: @learn.ensemble_predict($ensemble_models, {
"method": "weighted_average",
"weights": [0.4, 0.3, 0.3]
})Model performance comparison
model_performance: @learn.compare_models($ensemble_models, {
"test_data": @query("SELECT * FROM performance_logs WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 DAY)")
})
🛡️ Security & Performance Notes
- Data privacy: Ensure sensitive data is anonymized before learning - Model security: Protect learned models from unauthorized access - Performance impact: Monitor computational overhead of learning operations - Data quality: Validate input data quality for reliable learning - Model validation: Regularly validate model accuracy and performance - Bias detection: Monitor for bias in learned patterns and predictions🐞 Troubleshooting
- Insufficient data: Ensure adequate data points for reliable learning - Model accuracy: Monitor and improve model accuracy over time - Performance issues: Optimize learning algorithms for better performance - Data drift: Detect and handle changes in data patterns - Memory usage: Monitor memory consumption of learning models💡 Best Practices
- Start simple: Begin with simple learning models and gradually increase complexity - Validate models: Regularly test and validate learned models - Monitor performance: Track learning model performance and accuracy - Handle edge cases: Account for unusual data patterns and outliers - Document models: Document learning models and their purposes - Regular updates: Update models with fresh data regularly🔗 Cross-References
- @ Operator Introduction - @cache Function - @query Function - Performance Optimization - Machine Learning Integration---
Master @learn in TuskLang and bring artificial intelligence to your configurations. 🧠