🐚 Advanced Features in TuskLang - Bash Guide
Advanced Features in TuskLang - Bash Guide
🚀 Revolutionary Advanced Capabilities
Advanced features in TuskLang transform your configuration files into intelligent, self-adapting systems. No more static configurations or complex integration code - everything lives in your TuskLang configuration with machine learning, real-time optimization, and intelligent automation.
> "We don't bow to any king" - TuskLang advanced features break free from traditional configuration constraints and bring modern AI-powered capabilities to your Bash applications.
🧠 Machine Learning Integration
@learn Operator
Machine learning configuration
ml_config:
enabled: true
model: "optimal_settings"
algorithm: "reinforcement_learning"
learning_rate: 0.01
batch_size: 100#@learn: optimal_setting
#@learn-model: optimal_settings
#@learn-algorithm: reinforcement_learning
#@learn-rate: 0.01
Bash implementation
learn_optimal_setting() {
local setting_name="$1"
local current_value="$2"
local performance_metric="$3"
# Load ML configuration
source <(tsk load ml-config.tsk)
# Update learning model
update_ml_model "$setting_name" "$current_value" "$performance_metric"
# Get optimized value
local optimized_value=$(get_optimized_setting "$setting_name")
echo "$optimized_value"
}
@optimize Operator
Optimization configuration
optimize_config:
target: "response_time"
constraints: ["memory_usage", "cpu_usage"]
algorithm: "genetic_algorithm"
population_size: 50
generations: 100#@optimize: response_time
#@optimize-target: response_time
#@optimize-constraints: ["memory_usage", "cpu_usage"]
Bash implementation
optimize_performance() {
local target_metric="$1"
local constraints="$2"
# Load optimization configuration
source <(tsk load optimize-config.tsk)
# Run optimization algorithm
local optimized_params=$(run_optimization "$target_metric" "$constraints")
# Apply optimized parameters
apply_optimized_parameters "$optimized_params"
echo "Optimization completed: $optimized_params"
}
📊 Real-Time Monitoring
@metrics Operator
Metrics configuration
metrics_config:
enabled: true
backend: "prometheus"
interval: 30
retention: "30d"
alerts: true#@metrics: response_time_ms
#@metrics-backend: prometheus
#@metrics-interval: 30
Bash implementation
collect_metrics() {
local metric_name="$1"
local value="$2"
local labels="$3"
# Load metrics configuration
source <(tsk load metrics-config.tsk)
# Send metric to backend
send_metric "$metric_name" "$value" "$labels"
# Check alerts
check_metric_alerts "$metric_name" "$value"
}
@monitor Operator
Monitoring configuration
monitor_config:
services: ["web", "api", "database"]
health_checks: true
auto_restart: true
notification: "slack"#@monitor: web_service
#@monitor-health: true
#@monitor-auto-restart: true
Bash implementation
monitor_service() {
local service_name="$1"
# Load monitoring configuration
source <(tsk load monitor-config.tsk)
# Check service health
local health_status=$(check_service_health "$service_name")
if [[ "$health_status" != "healthy" ]]; then
# Auto-restart if enabled
if [[ "${monitor_auto_restart}" == "true" ]]; then
restart_service "$service_name"
fi
# Send notification
send_notification "$service_name" "$health_status"
fi
}
🔄 Dynamic Configuration
@adapt Operator
Adaptation configuration
adapt_config:
triggers: ["load", "time", "events"]
strategies: ["scale", "optimize", "reconfigure"]
learning: true#@adapt: load_based
#@adapt-trigger: load
#@adapt-strategy: scale
Bash implementation
adapt_configuration() {
local trigger="$1"
local current_load="$2"
# Load adaptation configuration
source <(tsk load adapt-config.tsk)
# Determine adaptation strategy
local strategy=$(determine_adaptation_strategy "$trigger" "$current_load")
# Apply adaptation
apply_adaptation "$strategy"
echo "Configuration adapted: $strategy"
}
@predict Operator
Prediction configuration
predict_config:
model: "time_series"
horizon: "24h"
confidence: 0.95
features: ["load", "time", "day_of_week"]#@predict: load_forecast
#@predict-model: time_series
#@predict-horizon: 24h
Bash implementation
predict_future_load() {
local forecast_horizon="$1"
# Load prediction configuration
source <(tsk load predict-config.tsk)
# Collect historical data
local historical_data=$(collect_historical_data)
# Generate prediction
local prediction=$(generate_prediction "$historical_data" "$forecast_horizon")
echo "$prediction"
}
🎯 Real-World Examples
Complete Advanced Configuration
advanced-config.tsk
advanced_config:
ml:
enabled: true
models:
- name: "optimal_cache_size"
algorithm: "reinforcement_learning"
target: "cache_hit_rate"
- name: "optimal_thread_count"
algorithm: "genetic_algorithm"
target: "throughput"
optimization:
enabled: true
targets:
- "response_time"
- "memory_usage"
- "cpu_usage"
constraints:
- "max_memory: 8GB"
- "max_cpu: 80%"
monitoring:
enabled: true
metrics:
- "response_time_ms"
- "requests_per_second"
- "error_rate"
- "memory_usage_mb"
alerts:
- condition: "response_time > 1000ms"
action: "scale_up"
- condition: "error_rate > 5%"
action: "restart_service"
adaptation:
enabled: true
triggers:
- "high_load"
- "low_performance"
- "time_based"
strategies:
- "scale_horizontally"
- "optimize_cache"
- "adjust_threads"
AI-Powered Web Server
ai-web-server.tsk
web_server_config:
name: "AI-Powered Web Server"
version: "2.0.0"#@learn: optimal_worker_count
#@optimize: response_time
#@metrics: requests_per_second
#@monitor: web_server
#@adapt: load_based
#@learn-config:
target: "response_time"
features: ["concurrent_connections", "cpu_usage", "memory_usage"]
algorithm: "neural_network"
learning_rate: 0.001
#@optimize-config:
target: "response_time"
parameters: ["worker_processes", "worker_connections", "keepalive_timeout"]
algorithm: "bayesian_optimization"
max_iterations: 100
#@metrics-config:
backend: "prometheus"
interval: 15
metrics:
- "requests_per_second"
- "response_time_p95"
- "error_rate"
- "active_connections"
#@monitor-config:
health_checks:
- endpoint: "/health"
interval: 30
timeout: 5
auto_scaling:
min_instances: 2
max_instances: 10
scale_up_threshold: 80%
scale_down_threshold: 20%
#@adapt-config:
triggers:
- "high_load: cpu_usage > 80%"
- "low_performance: response_time > 500ms"
- "time_based: hour >= 9 && hour <= 17"
actions:
- "scale_up: add_worker_processes"
- "optimize_cache: increase_cache_size"
- "adjust_timeouts: reduce_keepalive_timeout"
Intelligent Database Configuration
intelligent-db.tsk
database_config:
name: "Intelligent Database"
type: "postgresql"#@learn: optimal_connection_pool
#@optimize: query_performance
#@metrics: query_execution_time
#@monitor: database_service
#@predict: query_load
#@learn-config:
target: "query_performance"
features: ["connection_count", "active_queries", "cache_hit_ratio"]
algorithm: "gradient_boosting"
validation_split: 0.2
#@optimize-config:
target: "query_performance"
parameters: ["max_connections", "shared_buffers", "work_mem"]
algorithm: "particle_swarm"
population_size: 30
#@metrics-config:
backend: "influxdb"
interval: 10
metrics:
- "active_connections"
- "query_execution_time"
- "cache_hit_ratio"
- "deadlocks_per_minute"
#@monitor-config:
health_checks:
- query: "SELECT 1"
interval: 15
timeout: 3
alerts:
- condition: "active_connections > 90%"
action: "increase_connection_pool"
- condition: "query_execution_time > 1000ms"
action: "optimize_queries"
#@predict-config:
model: "lstm"
features: ["hour", "day_of_week", "historical_load"]
horizon: "1h"
update_frequency: "15m"
🚨 Troubleshooting Advanced Features
Common Issues and Solutions
1. Machine Learning Issues
Debug machine learning
debug_ml_features() {
echo "Debugging machine learning features..."
# Check ML configuration
if [[ "${ml_enabled}" == "true" ]]; then
echo "✓ Machine learning enabled"
# Check model availability
local models=(${ml_models[@]})
for model in "${models[@]}"; do
if [[ -f "/models/$model.pkl" ]]; then
echo "✓ Model available: $model"
else
echo "⚠ Model missing: $model"
fi
done
else
echo "✗ Machine learning disabled"
fi
# Check optimization status
if [[ "${optimize_enabled}" == "true" ]]; then
echo "✓ Optimization enabled"
echo "Target: ${optimize_target}"
echo "Algorithm: ${optimize_algorithm}"
else
echo "✗ Optimization disabled"
fi
}
2. Monitoring Issues
Debug monitoring
debug_monitoring() {
echo "Debugging monitoring features..."
# Check metrics backend
local backend="${metrics_backend:-prometheus}"
case "$backend" in
"prometheus")
check_prometheus_connection
;;
"influxdb")
check_influxdb_connection
;;
*)
echo "⚠ Unknown metrics backend: $backend"
;;
esac
# Check health checks
if [[ "${monitor_health_checks}" == "true" ]]; then
echo "✓ Health checks enabled"
local services=(${monitor_services[@]})
for service in "${services[@]}"; do
check_service_health "$service"
done
else
echo "✗ Health checks disabled"
fi
}
🔒 Security Best Practices
Advanced Features Security
Security validation
validate_advanced_security() {
echo "Validating advanced features security..."
# Check ML model security
if [[ "${ml_enabled}" == "true" ]]; then
echo "✓ Machine learning enabled"
# Validate model sources
local models=(${ml_models[@]})
for model in "${models[@]}"; do
if validate_model_signature "$model"; then
echo "✓ Model signature valid: $model"
else
echo "⚠ Model signature invalid: $model"
fi
done
fi
# Check monitoring security
if [[ "${monitor_enabled}" == "true" ]]; then
echo "✓ Monitoring enabled"
# Check metrics encryption
if [[ "${metrics_encryption}" == "true" ]]; then
echo "✓ Metrics encryption enabled"
else
echo "⚠ Metrics encryption not enabled"
fi
fi
# Check adaptation security
if [[ "${adapt_enabled}" == "true" ]]; then
echo "✓ Adaptation enabled"
# Validate adaptation rules
validate_adaptation_rules
fi
}
📈 Performance Optimization
Advanced Features Performance
Performance validation
validate_advanced_performance() {
echo "Validating advanced features performance..."
# Check ML performance
if [[ "${ml_enabled}" == "true" ]]; then
echo "✓ Machine learning enabled"
# Check model inference time
local inference_time=$(measure_model_inference_time)
if [[ "$inference_time" -lt 100 ]]; then
echo "✓ Model inference time: ${inference_time}ms"
else
echo "⚠ Slow model inference: ${inference_time}ms"
fi
fi
# Check optimization performance
if [[ "${optimize_enabled}" == "true" ]]; then
echo "✓ Optimization enabled"
# Check optimization convergence
local convergence_time=$(measure_optimization_convergence)
echo "Optimization convergence: ${convergence_time}s"
fi
# Check monitoring overhead
if [[ "${monitor_enabled}" == "true" ]]; then
echo "✓ Monitoring enabled"
# Check metrics collection overhead
local overhead=$(measure_monitoring_overhead)
if [[ "$overhead" -lt 5 ]]; then
echo "✓ Low monitoring overhead: ${overhead}%"
else
echo "⚠ High monitoring overhead: ${overhead}%"
fi
fi
}
🎯 Next Steps
- Plugin Integration: Explore advanced feature plugins - Custom Algorithms: Implement custom ML algorithms - Advanced Patterns: Understand complex AI patterns - Testing Advanced Features: Test advanced functionality - Performance Tuning: Optimize advanced feature performance
---
Advanced features transform your TuskLang configuration into an intelligent, self-adapting system. They bring modern AI-powered capabilities to your Bash applications with machine learning, real-time optimization, and intelligent automation!