🐚 Advanced Features in TuskLang - Bash Guide

Bash Documentation

Advanced Features in TuskLang - Bash Guide

🚀 Revolutionary Advanced Capabilities

Advanced features in TuskLang transform your configuration files into intelligent, self-adapting systems. No more static configurations or complex integration code - everything lives in your TuskLang configuration with machine learning, real-time optimization, and intelligent automation.

> "We don't bow to any king" - TuskLang advanced features break free from traditional configuration constraints and bring modern AI-powered capabilities to your Bash applications.

🧠 Machine Learning Integration

@learn Operator

Machine learning configuration

ml_config: enabled: true model: "optimal_settings" algorithm: "reinforcement_learning" learning_rate: 0.01 batch_size: 100

#@learn: optimal_setting #@learn-model: optimal_settings #@learn-algorithm: reinforcement_learning #@learn-rate: 0.01

Bash implementation

learn_optimal_setting() { local setting_name="$1" local current_value="$2" local performance_metric="$3" # Load ML configuration source <(tsk load ml-config.tsk) # Update learning model update_ml_model "$setting_name" "$current_value" "$performance_metric" # Get optimized value local optimized_value=$(get_optimized_setting "$setting_name") echo "$optimized_value" }

@optimize Operator

Optimization configuration

optimize_config: target: "response_time" constraints: ["memory_usage", "cpu_usage"] algorithm: "genetic_algorithm" population_size: 50 generations: 100

#@optimize: response_time #@optimize-target: response_time #@optimize-constraints: ["memory_usage", "cpu_usage"]

Bash implementation

optimize_performance() { local target_metric="$1" local constraints="$2" # Load optimization configuration source <(tsk load optimize-config.tsk) # Run optimization algorithm local optimized_params=$(run_optimization "$target_metric" "$constraints") # Apply optimized parameters apply_optimized_parameters "$optimized_params" echo "Optimization completed: $optimized_params" }

📊 Real-Time Monitoring

@metrics Operator

Metrics configuration

metrics_config: enabled: true backend: "prometheus" interval: 30 retention: "30d" alerts: true

#@metrics: response_time_ms #@metrics-backend: prometheus #@metrics-interval: 30

Bash implementation

collect_metrics() { local metric_name="$1" local value="$2" local labels="$3" # Load metrics configuration source <(tsk load metrics-config.tsk) # Send metric to backend send_metric "$metric_name" "$value" "$labels" # Check alerts check_metric_alerts "$metric_name" "$value" }

@monitor Operator

Monitoring configuration

monitor_config: services: ["web", "api", "database"] health_checks: true auto_restart: true notification: "slack"

#@monitor: web_service #@monitor-health: true #@monitor-auto-restart: true

Bash implementation

monitor_service() { local service_name="$1" # Load monitoring configuration source <(tsk load monitor-config.tsk) # Check service health local health_status=$(check_service_health "$service_name") if [[ "$health_status" != "healthy" ]]; then # Auto-restart if enabled if [[ "${monitor_auto_restart}" == "true" ]]; then restart_service "$service_name" fi # Send notification send_notification "$service_name" "$health_status" fi }

🔄 Dynamic Configuration

@adapt Operator

Adaptation configuration

adapt_config: triggers: ["load", "time", "events"] strategies: ["scale", "optimize", "reconfigure"] learning: true

#@adapt: load_based #@adapt-trigger: load #@adapt-strategy: scale

Bash implementation

adapt_configuration() { local trigger="$1" local current_load="$2" # Load adaptation configuration source <(tsk load adapt-config.tsk) # Determine adaptation strategy local strategy=$(determine_adaptation_strategy "$trigger" "$current_load") # Apply adaptation apply_adaptation "$strategy" echo "Configuration adapted: $strategy" }

@predict Operator

Prediction configuration

predict_config: model: "time_series" horizon: "24h" confidence: 0.95 features: ["load", "time", "day_of_week"]

#@predict: load_forecast #@predict-model: time_series #@predict-horizon: 24h

Bash implementation

predict_future_load() { local forecast_horizon="$1" # Load prediction configuration source <(tsk load predict-config.tsk) # Collect historical data local historical_data=$(collect_historical_data) # Generate prediction local prediction=$(generate_prediction "$historical_data" "$forecast_horizon") echo "$prediction" }

🎯 Real-World Examples

Complete Advanced Configuration

advanced-config.tsk

advanced_config: ml: enabled: true models: - name: "optimal_cache_size" algorithm: "reinforcement_learning" target: "cache_hit_rate" - name: "optimal_thread_count" algorithm: "genetic_algorithm" target: "throughput" optimization: enabled: true targets: - "response_time" - "memory_usage" - "cpu_usage" constraints: - "max_memory: 8GB" - "max_cpu: 80%" monitoring: enabled: true metrics: - "response_time_ms" - "requests_per_second" - "error_rate" - "memory_usage_mb" alerts: - condition: "response_time > 1000ms" action: "scale_up" - condition: "error_rate > 5%" action: "restart_service" adaptation: enabled: true triggers: - "high_load" - "low_performance" - "time_based" strategies: - "scale_horizontally" - "optimize_cache" - "adjust_threads"

AI-Powered Web Server

ai-web-server.tsk

web_server_config: name: "AI-Powered Web Server" version: "2.0.0"

#@learn: optimal_worker_count #@optimize: response_time #@metrics: requests_per_second #@monitor: web_server #@adapt: load_based

#@learn-config:

target: "response_time"

features: ["concurrent_connections", "cpu_usage", "memory_usage"]

algorithm: "neural_network"

learning_rate: 0.001

#@optimize-config:

target: "response_time"

parameters: ["worker_processes", "worker_connections", "keepalive_timeout"]

algorithm: "bayesian_optimization"

max_iterations: 100

#@metrics-config:

backend: "prometheus"

interval: 15

metrics:

- "requests_per_second"

- "response_time_p95"

- "error_rate"

- "active_connections"

#@monitor-config:

health_checks:

- endpoint: "/health"

interval: 30

timeout: 5

auto_scaling:

min_instances: 2

max_instances: 10

scale_up_threshold: 80%

scale_down_threshold: 20%

#@adapt-config:

triggers:

- "high_load: cpu_usage > 80%"

- "low_performance: response_time > 500ms"

- "time_based: hour >= 9 && hour <= 17"

actions:

- "scale_up: add_worker_processes"

- "optimize_cache: increase_cache_size"

- "adjust_timeouts: reduce_keepalive_timeout"

Intelligent Database Configuration

intelligent-db.tsk

database_config: name: "Intelligent Database" type: "postgresql"

#@learn: optimal_connection_pool #@optimize: query_performance #@metrics: query_execution_time #@monitor: database_service #@predict: query_load

#@learn-config:

target: "query_performance"

features: ["connection_count", "active_queries", "cache_hit_ratio"]

algorithm: "gradient_boosting"

validation_split: 0.2

#@optimize-config:

target: "query_performance"

parameters: ["max_connections", "shared_buffers", "work_mem"]

algorithm: "particle_swarm"

population_size: 30

#@metrics-config:

backend: "influxdb"

interval: 10

metrics:

- "active_connections"

- "query_execution_time"

- "cache_hit_ratio"

- "deadlocks_per_minute"

#@monitor-config:

health_checks:

- query: "SELECT 1"

interval: 15

timeout: 3

alerts:

- condition: "active_connections > 90%"

action: "increase_connection_pool"

- condition: "query_execution_time > 1000ms"

action: "optimize_queries"

#@predict-config:

model: "lstm"

features: ["hour", "day_of_week", "historical_load"]

horizon: "1h"

update_frequency: "15m"

🚨 Troubleshooting Advanced Features

Common Issues and Solutions

1. Machine Learning Issues

Debug machine learning

debug_ml_features() { echo "Debugging machine learning features..." # Check ML configuration if [[ "${ml_enabled}" == "true" ]]; then echo "✓ Machine learning enabled" # Check model availability local models=(${ml_models[@]}) for model in "${models[@]}"; do if [[ -f "/models/$model.pkl" ]]; then echo "✓ Model available: $model" else echo "⚠ Model missing: $model" fi done else echo "✗ Machine learning disabled" fi # Check optimization status if [[ "${optimize_enabled}" == "true" ]]; then echo "✓ Optimization enabled" echo "Target: ${optimize_target}" echo "Algorithm: ${optimize_algorithm}" else echo "✗ Optimization disabled" fi }

2. Monitoring Issues

Debug monitoring

debug_monitoring() { echo "Debugging monitoring features..." # Check metrics backend local backend="${metrics_backend:-prometheus}" case "$backend" in "prometheus") check_prometheus_connection ;; "influxdb") check_influxdb_connection ;; *) echo "⚠ Unknown metrics backend: $backend" ;; esac # Check health checks if [[ "${monitor_health_checks}" == "true" ]]; then echo "✓ Health checks enabled" local services=(${monitor_services[@]}) for service in "${services[@]}"; do check_service_health "$service" done else echo "✗ Health checks disabled" fi }

🔒 Security Best Practices

Advanced Features Security

Security validation

validate_advanced_security() { echo "Validating advanced features security..." # Check ML model security if [[ "${ml_enabled}" == "true" ]]; then echo "✓ Machine learning enabled" # Validate model sources local models=(${ml_models[@]}) for model in "${models[@]}"; do if validate_model_signature "$model"; then echo "✓ Model signature valid: $model" else echo "⚠ Model signature invalid: $model" fi done fi # Check monitoring security if [[ "${monitor_enabled}" == "true" ]]; then echo "✓ Monitoring enabled" # Check metrics encryption if [[ "${metrics_encryption}" == "true" ]]; then echo "✓ Metrics encryption enabled" else echo "⚠ Metrics encryption not enabled" fi fi # Check adaptation security if [[ "${adapt_enabled}" == "true" ]]; then echo "✓ Adaptation enabled" # Validate adaptation rules validate_adaptation_rules fi }

📈 Performance Optimization

Advanced Features Performance

Performance validation

validate_advanced_performance() { echo "Validating advanced features performance..." # Check ML performance if [[ "${ml_enabled}" == "true" ]]; then echo "✓ Machine learning enabled" # Check model inference time local inference_time=$(measure_model_inference_time) if [[ "$inference_time" -lt 100 ]]; then echo "✓ Model inference time: ${inference_time}ms" else echo "⚠ Slow model inference: ${inference_time}ms" fi fi # Check optimization performance if [[ "${optimize_enabled}" == "true" ]]; then echo "✓ Optimization enabled" # Check optimization convergence local convergence_time=$(measure_optimization_convergence) echo "Optimization convergence: ${convergence_time}s" fi # Check monitoring overhead if [[ "${monitor_enabled}" == "true" ]]; then echo "✓ Monitoring enabled" # Check metrics collection overhead local overhead=$(measure_monitoring_overhead) if [[ "$overhead" -lt 5 ]]; then echo "✓ Low monitoring overhead: ${overhead}%" else echo "⚠ High monitoring overhead: ${overhead}%" fi fi }

🎯 Next Steps

- Plugin Integration: Explore advanced feature plugins - Custom Algorithms: Implement custom ML algorithms - Advanced Patterns: Understand complex AI patterns - Testing Advanced Features: Test advanced functionality - Performance Tuning: Optimize advanced feature performance

---

Advanced features transform your TuskLang configuration into an intelligent, self-adapting system. They bring modern AI-powered capabilities to your Bash applications with machine learning, real-time optimization, and intelligent automation!