🐚 Data Pipeline Integration with TuskLang
Data Pipeline Integration with TuskLang
🚀 Revolutionary Data Processing - Where Configuration Meets Intelligence
TuskLang transforms data pipelines from rigid, hardcoded processes into intelligent, adaptive systems that respond to your data patterns and business needs. No more fighting with complex ETL tools - TuskLang brings the power of intelligent data processing to your fingertips.
"We don't bow to any king" - especially not to bloated data pipeline frameworks that require armies of engineers to maintain.
🎯 Core Data Pipeline Capabilities
Intelligent ETL Processing
#!/bin/bashTuskLang-powered ETL pipeline
source tusk.shDynamic data extraction with intelligent scheduling
extract_config="
[data_extraction]
source: @env('DATA_SOURCE', 'postgresql://localhost/analytics')
schedule: @learn('optimal_extraction_time', '0 2 *')
batch_size: @optimize('batch_size', 1000)
parallel_workers: @metrics('cpu_cores', 4)[transformation]
rules: @file.read('transformation_rules.tsk')
validation: @validate.schema('data_schema.json')
quality_checks: @cache('1h', 'quality_thresholds')
[loading]
target: @env('DATA_WAREHOUSE', 's3://analytics-bucket')
compression: @learn('optimal_compression', 'gzip')
partitioning: @optimize('partition_strategy', 'date')
"
Execute intelligent ETL pipeline
tsk process --config <(echo "$extract_config") --pipeline etl
Real-Time Streaming Integration
#!/bin/bashReal-time data streaming with TuskLang
stream_config="
[stream_processor]
input_topic: @env('KAFKA_TOPIC', 'user_events')
output_topic: @env('PROCESSED_EVENTS', 'processed_events')
window_size: @learn('optimal_window', '5m')
parallelism: @metrics('available_cores', 8)[stream_rules]
filter: @file.read('stream_filters.tsk')
aggregation: @cache('30s', 'aggregation_rules')
alerting: @validate.threshold('error_rate', 0.01)
[stream_monitoring]
metrics: @metrics.collect('stream_throughput')
health_check: @health.stream('kafka_connectivity')
backpressure: @monitor.backpressure('input_queue')
"
Start intelligent streaming pipeline
tsk stream --config <(echo "$stream_config") --real-time
🔄 ETL Process Orchestration
Multi-Stage Data Processing
#!/bin/bashComplex ETL orchestration with TuskLang
etl_pipeline="
[pipeline_stages]
stage1_extract:
type: extract
source: @env('SOURCE_DB')
query: @file.read('extract_queries.sql')
parallel: @optimize('extract_parallelism', 4)stage2_transform:
type: transform
rules: @file.read('transform_rules.tsk')
validation: @validate.data_quality()
cache: @cache('2h', 'transformed_data')
stage3_load:
type: load
target: @env('TARGET_WAREHOUSE')
strategy: @learn('load_strategy', 'incremental')
rollback: @backup.create('pre_load_snapshot')
[error_handling]
retry_attempts: @env('MAX_RETRIES', 3)
dead_letter_queue: @env('DLQ_TOPIC', 'failed_records')
notification: @alert.send('pipeline_failure')
"
Execute orchestrated ETL pipeline
tsk pipeline --config <(echo "$etl_pipeline") --monitor
Data Quality Assurance
#!/bin/bashComprehensive data quality checks
quality_config="
[data_quality]
completeness: @validate.completeness('required_fields')
accuracy: @validate.accuracy('business_rules')
consistency: @validate.consistency('cross_table_checks')
timeliness: @validate.timeliness('data_freshness')[quality_thresholds]
min_completeness: @env('MIN_COMPLETENESS', 0.95)
max_duplicates: @env('MAX_DUPLICATES', 0.01)
data_freshness_hours: @env('MAX_AGE_HOURS', 24)
[quality_monitoring]
dashboard: @metrics.dashboard('data_quality')
alerts: @alert.threshold('quality_score', 0.9)
reports: @report.generate('quality_metrics')
"
Run data quality assessment
tsk quality --config <(echo "$quality_config") --assess
📊 Batch Processing Intelligence
Intelligent Batch Scheduling
#!/bin/bashSmart batch processing with adaptive scheduling
batch_config="
[batch_processor]
input_path: @env('BATCH_INPUT_PATH')
output_path: @env('BATCH_OUTPUT_PATH')
batch_size: @learn('optimal_batch_size', 10000)
parallel_jobs: @metrics('available_memory_gb', 4)[scheduling]
frequency: @learn('processing_frequency', 'hourly')
peak_hours: @optimize('peak_avoidance', 'true')
resource_aware: @metrics('system_load', 'adaptive')
[optimization]
compression: @learn('compression_ratio', 'gzip')
partitioning: @optimize('partition_size', '1gb')
caching: @cache('4h', 'processed_batches')
"
Execute intelligent batch processing
tsk batch --config <(echo "$batch_config") --optimize
Incremental Processing
#!/bin/bashIncremental data processing with change detection
incremental_config="
[incremental_processing]
change_detection: @file.watch('source_directory')
last_processed: @cache('persistent', 'last_timestamp')
delta_strategy: @learn('delta_method', 'timestamp')[processing_logic]
new_records: @query('SELECT * FROM source WHERE updated_at > @cache("last_processed")')
modified_records: @query('SELECT * FROM source WHERE modified_at > @cache("last_processed")')
deleted_records: @query('SELECT id FROM audit_log WHERE action = "DELETE" AND timestamp > @cache("last_processed")')
[consistency]
transactional: @env('TRANSACTIONAL_PROCESSING', 'true')
rollback_capability: @backup.create('pre_incremental')
verification: @validate.consistency('post_processing')
"
Run incremental processing
tsk incremental --config <(echo "$incremental_config") --detect-changes
🔄 Streaming Data Processing
Real-Time Event Processing
#!/bin/bashReal-time event stream processing
stream_config="
[event_stream]
input_stream: @env('EVENT_STREAM_URL')
output_stream: @env('PROCESSED_STREAM_URL')
processing_latency: @metrics('target_latency_ms', 100)[event_processing]
filtering: @file.read('event_filters.tsk')
enrichment: @cache('5m', 'enrichment_data')
aggregation: @learn('aggregation_window', '1m')
[stream_monitoring]
throughput: @metrics.collect('events_per_second')
error_rate: @metrics.collect('processing_errors')
backpressure: @monitor.queue('input_buffer')
"
Start real-time event processing
tsk stream --config <(echo "$stream_config") --events
Complex Event Processing (CEP)
#!/bin/bashComplex event pattern detection
cep_config="
[pattern_detection]
patterns: @file.read('event_patterns.tsk')
correlation_window: @learn('correlation_time', '5m')
confidence_threshold: @env('CONFIDENCE_THRESHOLD', 0.8)[event_correlation]
temporal: @validate.temporal('event_sequence')
spatial: @validate.spatial('event_location')
causal: @validate.causal('event_dependencies')
[alerting]
pattern_matched: @alert.send('pattern_detected')
anomaly_detected: @alert.send('anomaly_alert')
trend_identified: @alert.send('trend_notification')
"
Start complex event processing
tsk cep --config <(echo "$cep_config") --detect-patterns
📈 Analytics and Reporting
Real-Time Analytics Dashboard
#!/bin/bashReal-time analytics with TuskLang
analytics_config="
[real_time_analytics]
data_sources: @env('ANALYTICS_SOURCES')
computation_interval: @learn('computation_frequency', '30s')
dashboard_refresh: @env('DASHBOARD_REFRESH', '5s')[metrics_computation]
kpis: @file.read('kpi_definitions.tsk')
calculations: @cache('1m', 'metric_formulas')
trends: @learn('trend_detection', 'moving_average')
[visualization]
charts: @file.read('chart_configs.tsk')
alerts: @alert.threshold('kpi_thresholds')
exports: @report.schedule('hourly_reports')
"
Start real-time analytics
tsk analytics --config <(echo "$analytics_config") --dashboard
Predictive Analytics
#!/bin/bashPredictive analytics with machine learning
predictive_config="
[machine_learning]
models: @file.read('ml_models.tsk')
training_data: @env('TRAINING_DATA_PATH')
prediction_interval: @learn('prediction_frequency', '1h')[model_management]
versioning: @version.control('model_versions')
performance: @metrics.model('accuracy_score')
retraining: @learn('retraining_schedule', 'weekly')
[predictions]
forecasting: @ml.predict('demand_forecast')
anomaly_detection: @ml.detect('anomalies')
recommendations: @ml.recommend('user_preferences')
"
Start predictive analytics
tsk ml --config <(echo "$predictive_config") --predict
🔧 Advanced Pipeline Features
Data Lineage and Governance
#!/bin/bashData lineage tracking and governance
lineage_config="
[data_lineage]
tracking: @env('LINEAGE_TRACKING', 'true')
metadata: @file.read('metadata_schema.tsk')
audit_trail: @audit.track('data_movements')[governance]
policies: @file.read('data_policies.tsk')
compliance: @validate.compliance('gdpr_requirements')
retention: @policy.retention('data_lifecycle')
[discovery]
catalog: @catalog.update('data_assets')
search: @search.index('metadata')
documentation: @docs.generate('data_dictionary')
"
Enable data governance
tsk governance --config <(echo "$lineage_config") --track-lineage
Performance Optimization
#!/bin/bashPipeline performance optimization
performance_config="
[optimization]
resource_monitoring: @metrics.system('cpu_memory_disk')
bottleneck_detection: @monitor.bottlenecks('pipeline_stages')
auto_scaling: @scale.auto('processing_capacity')[caching_strategy]
hot_data: @cache('1h', 'frequently_accessed')
warm_data: @cache('4h', 'moderately_accessed')
cold_data: @storage.archive('rarely_accessed')
[parallelization]
data_parallel: @parallel.data('partition_processing')
task_parallel: @parallel.task('independent_operations')
pipeline_parallel: @parallel.pipeline('stage_overlap')
"
Optimize pipeline performance
tsk optimize --config <(echo "$performance_config") --auto-tune
🛠️ Troubleshooting and Monitoring
Pipeline Health Monitoring
#!/bin/bashComprehensive pipeline monitoring
monitoring_config="
[health_checks]
connectivity: @health.check('data_source_connectivity')
performance: @health.check('processing_performance')
quality: @health.check('data_quality_metrics')[alerting]
critical_alerts: @alert.critical('pipeline_failure')
warning_alerts: @alert.warning('performance_degradation')
info_alerts: @alert.info('pipeline_status')
[logging]
structured_logs: @log.structured('pipeline_events')
error_tracking: @log.errors('processing_errors')
audit_logs: @log.audit('data_access')
"
Monitor pipeline health
tsk monitor --config <(echo "$monitoring_config") --health-check
Debugging and Diagnostics
#!/bin/bashAdvanced debugging capabilities
debug_config="
[debugging]
step_by_step: @debug.enable('step_execution')
data_inspection: @debug.inspect('intermediate_data')
performance_profiling: @debug.profile('execution_time')[diagnostics]
error_analysis: @diagnose.errors('failure_patterns')
performance_analysis: @diagnose.performance('bottlenecks')
data_analysis: @diagnose.data('quality_issues')
[recovery]
auto_recovery: @recovery.auto('transient_failures')
manual_recovery: @recovery.manual('manual_intervention')
rollback_capability: @recovery.rollback('failed_changes')
"
Enable debugging mode
tsk debug --config <(echo "$debug_config") --diagnose
🔒 Security and Compliance
Data Security
#!/bin/bashData security and privacy protection
security_config="
[data_protection]
encryption: @encrypt.data('sensitive_fields')
masking: @mask.sensitive('pii_data')
tokenization: @tokenize.pii('credit_cards')[access_control]
authentication: @auth.verify('user_credentials')
authorization: @auth.authorize('data_access')
audit_logging: @audit.access('data_operations')
[compliance]
gdpr_compliance: @compliance.gdpr('data_processing')
sox_compliance: @compliance.sox('financial_data')
hipaa_compliance: @compliance.hipaa('healthcare_data')
"
Apply security measures
tsk secure --config <(echo "$security_config") --protect-data
📚 Best Practices and Patterns
Pipeline Design Patterns
#!/bin/bashCommon pipeline design patterns
patterns_config="
[design_patterns]
fan_out_fan_in: @pattern.fan_out('parallel_processing')
filter_map_reduce: @pattern.fmap_reduce('data_transformation')
publish_subscribe: @pattern.pub_sub('event_distribution')[error_handling]
circuit_breaker: @pattern.circuit_breaker('fault_tolerance')
retry_with_backoff: @pattern.retry('transient_failures')
dead_letter_queue: @pattern.dlq('failed_messages')
[scalability]
horizontal_scaling: @pattern.horizontal('load_distribution')
vertical_scaling: @pattern.vertical('resource_increase')
auto_scaling: @pattern.auto_scale('demand_based')
"
Apply design patterns
tsk patterns --config <(echo "$patterns_config") --apply
🚀 Getting Started with Data Pipelines
Quick Start Example
#!/bin/bashSimple data pipeline example
simple_pipeline="
[simple_etl]
extract:
source: 'postgresql://localhost/sales'
query: 'SELECT * FROM orders WHERE created_at > @date.yesterday()'
transform:
rules: |
- filter: 'amount > 100'
- aggregate: 'sum(amount) by customer_id'
- enrich: '@cache("customer_data")'
load:
target: 's3://analytics/processed_orders'
format: 'parquet'
compression: 'snappy'
"Run simple pipeline
tsk pipeline --config <(echo "$simple_pipeline") --execute
📖 Related Documentation
- Database Integration: 004-database-integration-bash.md
- @ Operator System: 031-sql-operator-bash.md
- Performance Optimization: 086-error-handling-bash.md
- Monitoring Integration: 083-monitoring-integration-bash.md
- Event-Driven Architecture: 094-event-driven-architecture-bash.md
---
Ready to revolutionize your data pipelines with TuskLang's intelligent processing capabilities?