🐚 Data Pipeline Integration with TuskLang

Bash Documentation

Data Pipeline Integration with TuskLang

🚀 Revolutionary Data Processing - Where Configuration Meets Intelligence

TuskLang transforms data pipelines from rigid, hardcoded processes into intelligent, adaptive systems that respond to your data patterns and business needs. No more fighting with complex ETL tools - TuskLang brings the power of intelligent data processing to your fingertips.

"We don't bow to any king" - especially not to bloated data pipeline frameworks that require armies of engineers to maintain.

🎯 Core Data Pipeline Capabilities

Intelligent ETL Processing

#!/bin/bash

TuskLang-powered ETL pipeline

source tusk.sh

Dynamic data extraction with intelligent scheduling

extract_config=" [data_extraction] source: @env('DATA_SOURCE', 'postgresql://localhost/analytics') schedule: @learn('optimal_extraction_time', '0 2 *') batch_size: @optimize('batch_size', 1000) parallel_workers: @metrics('cpu_cores', 4)

[transformation] rules: @file.read('transformation_rules.tsk') validation: @validate.schema('data_schema.json') quality_checks: @cache('1h', 'quality_thresholds')

[loading] target: @env('DATA_WAREHOUSE', 's3://analytics-bucket') compression: @learn('optimal_compression', 'gzip') partitioning: @optimize('partition_strategy', 'date') "

Execute intelligent ETL pipeline

tsk process --config <(echo "$extract_config") --pipeline etl

Real-Time Streaming Integration

#!/bin/bash

Real-time data streaming with TuskLang

stream_config=" [stream_processor] input_topic: @env('KAFKA_TOPIC', 'user_events') output_topic: @env('PROCESSED_EVENTS', 'processed_events') window_size: @learn('optimal_window', '5m') parallelism: @metrics('available_cores', 8)

[stream_rules] filter: @file.read('stream_filters.tsk') aggregation: @cache('30s', 'aggregation_rules') alerting: @validate.threshold('error_rate', 0.01)

[stream_monitoring] metrics: @metrics.collect('stream_throughput') health_check: @health.stream('kafka_connectivity') backpressure: @monitor.backpressure('input_queue') "

Start intelligent streaming pipeline

tsk stream --config <(echo "$stream_config") --real-time

🔄 ETL Process Orchestration

Multi-Stage Data Processing

#!/bin/bash

Complex ETL orchestration with TuskLang

etl_pipeline=" [pipeline_stages] stage1_extract: type: extract source: @env('SOURCE_DB') query: @file.read('extract_queries.sql') parallel: @optimize('extract_parallelism', 4)

stage2_transform: type: transform rules: @file.read('transform_rules.tsk') validation: @validate.data_quality() cache: @cache('2h', 'transformed_data')

stage3_load: type: load target: @env('TARGET_WAREHOUSE') strategy: @learn('load_strategy', 'incremental') rollback: @backup.create('pre_load_snapshot')

[error_handling] retry_attempts: @env('MAX_RETRIES', 3) dead_letter_queue: @env('DLQ_TOPIC', 'failed_records') notification: @alert.send('pipeline_failure') "

Execute orchestrated ETL pipeline

tsk pipeline --config <(echo "$etl_pipeline") --monitor

Data Quality Assurance

#!/bin/bash

Comprehensive data quality checks

quality_config=" [data_quality] completeness: @validate.completeness('required_fields') accuracy: @validate.accuracy('business_rules') consistency: @validate.consistency('cross_table_checks') timeliness: @validate.timeliness('data_freshness')

[quality_thresholds] min_completeness: @env('MIN_COMPLETENESS', 0.95) max_duplicates: @env('MAX_DUPLICATES', 0.01) data_freshness_hours: @env('MAX_AGE_HOURS', 24)

[quality_monitoring] dashboard: @metrics.dashboard('data_quality') alerts: @alert.threshold('quality_score', 0.9) reports: @report.generate('quality_metrics') "

Run data quality assessment

tsk quality --config <(echo "$quality_config") --assess

📊 Batch Processing Intelligence

Intelligent Batch Scheduling

#!/bin/bash

Smart batch processing with adaptive scheduling

batch_config=" [batch_processor] input_path: @env('BATCH_INPUT_PATH') output_path: @env('BATCH_OUTPUT_PATH') batch_size: @learn('optimal_batch_size', 10000) parallel_jobs: @metrics('available_memory_gb', 4)

[scheduling] frequency: @learn('processing_frequency', 'hourly') peak_hours: @optimize('peak_avoidance', 'true') resource_aware: @metrics('system_load', 'adaptive')

[optimization] compression: @learn('compression_ratio', 'gzip') partitioning: @optimize('partition_size', '1gb') caching: @cache('4h', 'processed_batches') "

Execute intelligent batch processing

tsk batch --config <(echo "$batch_config") --optimize

Incremental Processing

#!/bin/bash

Incremental data processing with change detection

incremental_config=" [incremental_processing] change_detection: @file.watch('source_directory') last_processed: @cache('persistent', 'last_timestamp') delta_strategy: @learn('delta_method', 'timestamp')

[processing_logic] new_records: @query('SELECT * FROM source WHERE updated_at > @cache("last_processed")') modified_records: @query('SELECT * FROM source WHERE modified_at > @cache("last_processed")') deleted_records: @query('SELECT id FROM audit_log WHERE action = "DELETE" AND timestamp > @cache("last_processed")')

[consistency] transactional: @env('TRANSACTIONAL_PROCESSING', 'true') rollback_capability: @backup.create('pre_incremental') verification: @validate.consistency('post_processing') "

Run incremental processing

tsk incremental --config <(echo "$incremental_config") --detect-changes

🔄 Streaming Data Processing

Real-Time Event Processing

#!/bin/bash

Real-time event stream processing

stream_config=" [event_stream] input_stream: @env('EVENT_STREAM_URL') output_stream: @env('PROCESSED_STREAM_URL') processing_latency: @metrics('target_latency_ms', 100)

[event_processing] filtering: @file.read('event_filters.tsk') enrichment: @cache('5m', 'enrichment_data') aggregation: @learn('aggregation_window', '1m')

[stream_monitoring] throughput: @metrics.collect('events_per_second') error_rate: @metrics.collect('processing_errors') backpressure: @monitor.queue('input_buffer') "

Start real-time event processing

tsk stream --config <(echo "$stream_config") --events

Complex Event Processing (CEP)

#!/bin/bash

Complex event pattern detection

cep_config=" [pattern_detection] patterns: @file.read('event_patterns.tsk') correlation_window: @learn('correlation_time', '5m') confidence_threshold: @env('CONFIDENCE_THRESHOLD', 0.8)

[event_correlation] temporal: @validate.temporal('event_sequence') spatial: @validate.spatial('event_location') causal: @validate.causal('event_dependencies')

[alerting] pattern_matched: @alert.send('pattern_detected') anomaly_detected: @alert.send('anomaly_alert') trend_identified: @alert.send('trend_notification') "

Start complex event processing

tsk cep --config <(echo "$cep_config") --detect-patterns

📈 Analytics and Reporting

Real-Time Analytics Dashboard

#!/bin/bash

Real-time analytics with TuskLang

analytics_config=" [real_time_analytics] data_sources: @env('ANALYTICS_SOURCES') computation_interval: @learn('computation_frequency', '30s') dashboard_refresh: @env('DASHBOARD_REFRESH', '5s')

[metrics_computation] kpis: @file.read('kpi_definitions.tsk') calculations: @cache('1m', 'metric_formulas') trends: @learn('trend_detection', 'moving_average')

[visualization] charts: @file.read('chart_configs.tsk') alerts: @alert.threshold('kpi_thresholds') exports: @report.schedule('hourly_reports') "

Start real-time analytics

tsk analytics --config <(echo "$analytics_config") --dashboard

Predictive Analytics

#!/bin/bash

Predictive analytics with machine learning

predictive_config=" [machine_learning] models: @file.read('ml_models.tsk') training_data: @env('TRAINING_DATA_PATH') prediction_interval: @learn('prediction_frequency', '1h')

[model_management] versioning: @version.control('model_versions') performance: @metrics.model('accuracy_score') retraining: @learn('retraining_schedule', 'weekly')

[predictions] forecasting: @ml.predict('demand_forecast') anomaly_detection: @ml.detect('anomalies') recommendations: @ml.recommend('user_preferences') "

Start predictive analytics

tsk ml --config <(echo "$predictive_config") --predict

🔧 Advanced Pipeline Features

Data Lineage and Governance

#!/bin/bash

Data lineage tracking and governance

lineage_config=" [data_lineage] tracking: @env('LINEAGE_TRACKING', 'true') metadata: @file.read('metadata_schema.tsk') audit_trail: @audit.track('data_movements')

[governance] policies: @file.read('data_policies.tsk') compliance: @validate.compliance('gdpr_requirements') retention: @policy.retention('data_lifecycle')

[discovery] catalog: @catalog.update('data_assets') search: @search.index('metadata') documentation: @docs.generate('data_dictionary') "

Enable data governance

tsk governance --config <(echo "$lineage_config") --track-lineage

Performance Optimization

#!/bin/bash

Pipeline performance optimization

performance_config=" [optimization] resource_monitoring: @metrics.system('cpu_memory_disk') bottleneck_detection: @monitor.bottlenecks('pipeline_stages') auto_scaling: @scale.auto('processing_capacity')

[caching_strategy] hot_data: @cache('1h', 'frequently_accessed') warm_data: @cache('4h', 'moderately_accessed') cold_data: @storage.archive('rarely_accessed')

[parallelization] data_parallel: @parallel.data('partition_processing') task_parallel: @parallel.task('independent_operations') pipeline_parallel: @parallel.pipeline('stage_overlap') "

Optimize pipeline performance

tsk optimize --config <(echo "$performance_config") --auto-tune

🛠️ Troubleshooting and Monitoring

Pipeline Health Monitoring

#!/bin/bash

Comprehensive pipeline monitoring

monitoring_config=" [health_checks] connectivity: @health.check('data_source_connectivity') performance: @health.check('processing_performance') quality: @health.check('data_quality_metrics')

[alerting] critical_alerts: @alert.critical('pipeline_failure') warning_alerts: @alert.warning('performance_degradation') info_alerts: @alert.info('pipeline_status')

[logging] structured_logs: @log.structured('pipeline_events') error_tracking: @log.errors('processing_errors') audit_logs: @log.audit('data_access') "

Monitor pipeline health

tsk monitor --config <(echo "$monitoring_config") --health-check

Debugging and Diagnostics

#!/bin/bash

Advanced debugging capabilities

debug_config=" [debugging] step_by_step: @debug.enable('step_execution') data_inspection: @debug.inspect('intermediate_data') performance_profiling: @debug.profile('execution_time')

[diagnostics] error_analysis: @diagnose.errors('failure_patterns') performance_analysis: @diagnose.performance('bottlenecks') data_analysis: @diagnose.data('quality_issues')

[recovery] auto_recovery: @recovery.auto('transient_failures') manual_recovery: @recovery.manual('manual_intervention') rollback_capability: @recovery.rollback('failed_changes') "

Enable debugging mode

tsk debug --config <(echo "$debug_config") --diagnose

🔒 Security and Compliance

Data Security

#!/bin/bash

Data security and privacy protection

security_config=" [data_protection] encryption: @encrypt.data('sensitive_fields') masking: @mask.sensitive('pii_data') tokenization: @tokenize.pii('credit_cards')

[access_control] authentication: @auth.verify('user_credentials') authorization: @auth.authorize('data_access') audit_logging: @audit.access('data_operations')

[compliance] gdpr_compliance: @compliance.gdpr('data_processing') sox_compliance: @compliance.sox('financial_data') hipaa_compliance: @compliance.hipaa('healthcare_data') "

Apply security measures

tsk secure --config <(echo "$security_config") --protect-data

📚 Best Practices and Patterns

Pipeline Design Patterns

#!/bin/bash

Common pipeline design patterns

patterns_config=" [design_patterns] fan_out_fan_in: @pattern.fan_out('parallel_processing') filter_map_reduce: @pattern.fmap_reduce('data_transformation') publish_subscribe: @pattern.pub_sub('event_distribution')

[error_handling] circuit_breaker: @pattern.circuit_breaker('fault_tolerance') retry_with_backoff: @pattern.retry('transient_failures') dead_letter_queue: @pattern.dlq('failed_messages')

[scalability] horizontal_scaling: @pattern.horizontal('load_distribution') vertical_scaling: @pattern.vertical('resource_increase') auto_scaling: @pattern.auto_scale('demand_based') "

Apply design patterns

tsk patterns --config <(echo "$patterns_config") --apply

🚀 Getting Started with Data Pipelines

Quick Start Example

#!/bin/bash

Simple data pipeline example

simple_pipeline=" [simple_etl] extract: source: 'postgresql://localhost/sales' query: 'SELECT * FROM orders WHERE created_at > @date.yesterday()' transform: rules: | - filter: 'amount > 100' - aggregate: 'sum(amount) by customer_id' - enrich: '@cache("customer_data")' load: target: 's3://analytics/processed_orders' format: 'parquet' compression: 'snappy' "

Run simple pipeline

tsk pipeline --config <(echo "$simple_pipeline") --execute

📖 Related Documentation

- Database Integration: 004-database-integration-bash.md - @ Operator System: 031-sql-operator-bash.md - Performance Optimization: 086-error-handling-bash.md - Monitoring Integration: 083-monitoring-integration-bash.md - Event-Driven Architecture: 094-event-driven-architecture-bash.md

---

Ready to revolutionize your data pipelines with TuskLang's intelligent processing capabilities?