🐚 Machine Learning Integration with TuskLang

Bash Documentation

Machine Learning Integration with TuskLang

🧠 Revolutionary ML - Where Intelligence Meets Configuration

TuskLang transforms machine learning from a complex, code-heavy process into an intelligent, configuration-driven system that adapts to your data and business needs. No more fighting with ML frameworks - TuskLang brings the power of intelligent learning to your fingertips.

"We don't bow to any king" - especially not to bloated ML frameworks that require PhDs to operate.

🎯 Core ML Capabilities

Intelligent Model Training

#!/bin/bash

TuskLang-powered ML training pipeline

source tusk.sh

Dynamic model training with intelligent hyperparameter optimization

training_config=" [model_training] algorithm: @learn('optimal_algorithm', 'random_forest') hyperparameters: @optimize('hyperparams', 'auto') training_data: @env('TRAINING_DATA_PATH') validation_split: @learn('validation_ratio', 0.2)

[feature_engineering] feature_selection: @ml.select_features('correlation_threshold') feature_scaling: @ml.scale_features('standard_scaler') feature_creation: @file.read('feature_rules.tsk')

[model_evaluation] metrics: @ml.evaluate('accuracy_precision_recall') cross_validation: @ml.cross_validate('k_fold', 5) performance_tracking: @metrics.model('training_performance') "

Execute intelligent model training

tsk ml train --config <(echo "$training_config") --auto-optimize

Real-Time Prediction Engine

#!/bin/bash

Real-time ML prediction with TuskLang

prediction_config=" [prediction_engine] model_path: @env('MODEL_PATH', '/models/production') prediction_endpoint: @env('PREDICTION_URL', 'http://localhost:8080/predict') batch_size: @optimize('prediction_batch', 100)

[prediction_pipeline] preprocessing: @ml.preprocess('input_data') feature_extraction: @ml.extract_features('raw_input') prediction: @ml.predict('processed_features') postprocessing: @ml.postprocess('predictions')

[prediction_monitoring] accuracy_tracking: @metrics.prediction('accuracy_score') latency_monitoring: @metrics.latency('prediction_time') drift_detection: @ml.detect_drift('data_distribution') "

Start real-time prediction service

tsk ml predict --config <(echo "$prediction_config") --serve

🎓 Model Training and Development

Automated Model Training

#!/bin/bash

Automated ML model training pipeline

auto_training_config=" [automated_training] data_preparation: cleaning: @ml.clean_data('missing_values') preprocessing: @ml.preprocess('data_types') validation: @validate.data('quality_checks')

model_selection: algorithms: @file.read('algorithm_candidates.tsk') evaluation: @ml.evaluate_models('performance_metrics') selection: @ml.select_best('accuracy_score')

hyperparameter_tuning: method: @learn('tuning_method', 'bayesian_optimization') search_space: @file.read('hyperparam_space.tsk') optimization: @optimize.hyperparams('model_performance') "

Run automated training

tsk ml auto-train --config <(echo "$auto_training_config") --full-pipeline

Feature Engineering Automation

#!/bin/bash

Intelligent feature engineering

feature_config=" [feature_engineering] automatic_features: temporal: @ml.create_temporal('date_features') categorical: @ml.encode_categorical('one_hot_encoding') numerical: @ml.transform_numerical('log_scaling')

feature_selection: correlation: @ml.select_correlation('threshold', 0.8) importance: @ml.select_importance('feature_ranking') dimensionality: @ml.reduce_dimensions('pca')

feature_monitoring: drift_detection: @ml.detect_feature_drift('distribution_changes') importance_tracking: @metrics.feature('importance_scores') quality_assessment: @ml.assess_features('quality_metrics') "

Execute feature engineering

tsk ml features --config <(echo "$feature_config") --engineer

🔮 Prediction and Inference

Batch Prediction Processing

#!/bin/bash

Batch prediction with intelligent batching

batch_prediction_config=" [batch_prediction] input_data: @env('BATCH_INPUT_PATH') output_path: @env('PREDICTION_OUTPUT_PATH') batch_size: @optimize('optimal_batch_size', 1000)

[prediction_pipeline] data_loading: @ml.load_batch('input_files') preprocessing: @ml.preprocess_batch('data_cleaning') prediction: @ml.predict_batch('model_inference') postprocessing: @ml.postprocess_batch('result_formatting')

[performance_optimization] parallel_processing: @parallel.predictions('multi_core') memory_optimization: @optimize.memory('batch_processing') caching: @cache.predictions('intermediate_results') "

Execute batch predictions

tsk ml batch-predict --config <(echo "$batch_prediction_config") --optimize

Real-Time Inference API

#!/bin/bash

Real-time inference API with TuskLang

inference_config=" [inference_api] endpoint: @env('API_ENDPOINT', '/api/v1/predict') model_serving: @ml.serve_model('production_model') load_balancing: @load_balance('prediction_requests')

[request_processing] input_validation: @validate.input('data_schema') preprocessing: @ml.preprocess_request('input_data') prediction: @ml.inference('model_prediction') response_formatting: @ml.format_response('prediction_output')

[api_monitoring] request_tracking: @metrics.api('request_count') latency_monitoring: @metrics.latency('response_time') error_tracking: @metrics.errors('prediction_errors') "

Start inference API

tsk ml serve --config <(echo "$inference_config") --api

📊 Model Management and Operations

Model Versioning and Deployment

#!/bin/bash

Intelligent model versioning and deployment

model_ops_config=" [model_versioning] version_control: @version.model('model_versions') experiment_tracking: @ml.track_experiments('mlflow_integration') model_registry: @registry.models('model_catalog')

[model_deployment] staging_deployment: @deploy.staging('model_testing') production_deployment: @deploy.production('model_rollout') rollback_capability: @deploy.rollback('previous_version')

[deployment_monitoring] health_checks: @health.model('model_availability') performance_monitoring: @monitor.model('prediction_performance') resource_usage: @metrics.resources('model_resources') "

Manage model lifecycle

tsk ml deploy --config <(echo "$model_ops_config") --version-control

Model Performance Monitoring

#!/bin/bash

Comprehensive model performance monitoring

performance_config=" [performance_monitoring] accuracy_tracking: @metrics.accuracy('prediction_accuracy') precision_recall: @metrics.precision_recall('classification_metrics') regression_metrics: @metrics.regression('mse_mae')

[drift_detection] data_drift: @ml.detect_data_drift('feature_distributions') concept_drift: @ml.detect_concept_drift('prediction_patterns') model_decay: @ml.detect_decay('performance_degradation')

[alerting] performance_alerts: @alert.performance('accuracy_threshold') drift_alerts: @alert.drift('drift_detected') resource_alerts: @alert.resources('resource_usage') "

Monitor model performance

tsk ml monitor --config <(echo "$performance_config") --track-metrics

🔄 ML Pipeline Automation

End-to-End ML Pipeline

#!/bin/bash

Complete ML pipeline automation

pipeline_config=" [ml_pipeline] data_ingestion: sources: @env('DATA_SOURCES') validation: @validate.data('quality_checks') preprocessing: @ml.preprocess('data_cleaning')

feature_engineering: feature_creation: @ml.create_features('feature_rules') feature_selection: @ml.select_features('importance_threshold') feature_scaling: @ml.scale_features('normalization')

model_training: algorithm_selection: @ml.select_algorithm('performance_comparison') hyperparameter_tuning: @ml.tune_hyperparams('optimization') model_evaluation: @ml.evaluate_model('validation_metrics')

model_deployment: model_serving: @ml.serve_model('production_deployment') performance_monitoring: @ml.monitor_performance('metrics_tracking') retraining_scheduling: @ml.schedule_retraining('performance_threshold') "

Execute complete ML pipeline

tsk ml pipeline --config <(echo "$pipeline_config") --end-to-end

Automated Retraining

#!/bin/bash

Intelligent model retraining

retraining_config=" [retraining_triggers] performance_degradation: @ml.trigger_retraining('accuracy_threshold') data_drift: @ml.trigger_retraining('drift_detection') time_based: @ml.trigger_retraining('scheduled_retraining')

[retraining_process] data_collection: @ml.collect_new_data('recent_data') model_retraining: @ml.retrain_model('updated_dataset') performance_comparison: @ml.compare_models('old_vs_new')

[deployment_strategy] a_b_testing: @ml.ab_test('model_comparison') gradual_rollout: @ml.gradual_rollout('percentage_increase') full_deployment: @ml.full_deployment('complete_switch') "

Set up automated retraining

tsk ml retrain --config <(echo "$retraining_config") --automated

🎯 Specialized ML Applications

Natural Language Processing

#!/bin/bash

NLP pipeline with TuskLang

nlp_config=" [nlp_pipeline] text_preprocessing: cleaning: @nlp.clean_text('remove_noise') tokenization: @nlp.tokenize('word_tokens') normalization: @nlp.normalize('text_standardization')

feature_extraction: embeddings: @nlp.embeddings('word_vectors') tf_idf: @nlp.tfidf('document_features') sentiment: @nlp.sentiment('emotion_analysis')

model_training: classification: @nlp.train_classifier('text_classification') generation: @nlp.train_generator('text_generation') translation: @nlp.train_translator('language_translation') "

Execute NLP pipeline

tsk ml nlp --config <(echo "$nlp_config") --process-text

Computer Vision

#!/bin/bash

Computer vision pipeline

vision_config=" [vision_pipeline] image_preprocessing: resizing: @cv.resize('target_dimensions') normalization: @cv.normalize('pixel_values') augmentation: @cv.augment('data_augmentation')

feature_extraction: cnn_features: @cv.cnn_features('convolutional_layers') object_detection: @cv.detect_objects('bounding_boxes') segmentation: @cv.segment_image('pixel_classification')

model_training: classification: @cv.train_classifier('image_classification') detection: @cv.train_detector('object_detection') segmentation: @cv.train_segmenter('semantic_segmentation') "

Execute computer vision pipeline

tsk ml vision --config <(echo "$vision_config") --process-images

Time Series Forecasting

#!/bin/bash

Time series forecasting

timeseries_config=" [timeseries_forecasting] data_preparation: seasonality: @ts.detect_seasonality('seasonal_patterns') trend_analysis: @ts.analyze_trend('trend_components') stationarity: @ts.check_stationarity('stationarity_test')

model_training: arima: @ts.train_arima('autoregressive_model') lstm: @ts.train_lstm('neural_forecasting') prophet: @ts.train_prophet('facebook_prophet')

forecasting: short_term: @ts.forecast_short('next_24_hours') medium_term: @ts.forecast_medium('next_week') long_term: @ts.forecast_long('next_month') "

Execute time series forecasting

tsk ml timeseries --config <(echo "$timeseries_config") --forecast

🔧 Advanced ML Features

Ensemble Learning

#!/bin/bash

Ensemble learning with multiple models

ensemble_config=" [ensemble_learning] base_models: model1: @ml.train_model('random_forest') model2: @ml.train_model('gradient_boosting') model3: @ml.train_model('neural_network')

ensemble_methods: voting: @ml.ensemble_voting('majority_vote') stacking: @ml.ensemble_stacking('meta_learner') blending: @ml.ensemble_blending('weighted_average')

performance_optimization: model_selection: @ml.select_ensemble('best_combination') weight_optimization: @ml.optimize_weights('ensemble_weights') diversity_measurement: @ml.measure_diversity('model_diversity') "

Create ensemble model

tsk ml ensemble --config <(echo "$ensemble_config") --combine

Transfer Learning

#!/bin/bash

Transfer learning for domain adaptation

transfer_config=" [transfer_learning] pre_trained_models: source_model: @ml.load_pretrained('imagenet_model') target_domain: @env('TARGET_DOMAIN_DATA') adaptation_method: @ml.adapt_model('fine_tuning')

adaptation_strategy: feature_extraction: @ml.extract_features('frozen_layers') fine_tuning: @ml.fine_tune('trainable_layers') domain_adaptation: @ml.adapt_domain('domain_alignment')

performance_evaluation: source_performance: @ml.evaluate_source('source_metrics') target_performance: @ml.evaluate_target('target_metrics') adaptation_effectiveness: @ml.evaluate_adaptation('improvement') "

Execute transfer learning

tsk ml transfer --config <(echo "$transfer_config") --adapt

🛠️ ML Operations and Monitoring

MLOps Pipeline

#!/bin/bash

Complete MLOps pipeline

mlops_config=" [mlops_pipeline] development: experiment_tracking: @mlops.track_experiments('mlflow') version_control: @mlops.version_models('git_lfs') testing: @mlops.test_models('unit_integration')

deployment: containerization: @mlops.containerize('docker_images') orchestration: @mlops.orchestrate('kubernetes') monitoring: @mlops.monitor('prometheus_grafana')

operations: scaling: @mlops.scale('auto_scaling') backup: @mlops.backup('model_backups') disaster_recovery: @mlops.recovery('failover_strategy') "

Execute MLOps pipeline

tsk mlops --config <(echo "$mlops_config") --full-pipeline

Model Explainability

#!/bin/bash

Model explainability and interpretability

explainability_config=" [model_explainability] feature_importance: permutation_importance: @explain.permutation('feature_ranking') shap_values: @explain.shap('feature_contributions') lime_explanations: @explain.lime('local_explanations')

interpretability: decision_trees: @explain.decision_tree('tree_structure') rule_extraction: @explain.extract_rules('if_then_rules') counterfactuals: @explain.counterfactuals('what_if_scenarios')

visualization: feature_plots: @explain.plot_features('importance_charts') partial_dependence: @explain.partial_dependence('feature_effects') interaction_plots: @explain.interactions('feature_interactions') "

Generate model explanations

tsk ml explain --config <(echo "$explainability_config") --interpret

🔒 ML Security and Privacy

Privacy-Preserving ML

#!/bin/bash

Privacy-preserving machine learning

privacy_config=" [privacy_preserving_ml] differential_privacy: noise_addition: @privacy.add_noise('gaussian_noise') privacy_budget: @privacy.budget('epsilon_delta') composition_theorems: @privacy.compose('budget_management')

federated_learning: distributed_training: @privacy.federated('local_training') secure_aggregation: @privacy.secure_aggregate('encrypted_aggregation') privacy_guarantees: @privacy.guarantees('privacy_protection')

homomorphic_encryption: encrypted_computation: @privacy.homomorphic('encrypted_ml') secure_inference: @privacy.secure_inference('encrypted_predictions') key_management: @privacy.key_management('encryption_keys') "

Apply privacy-preserving techniques

tsk ml privacy --config <(echo "$privacy_config") --protect

📚 Best Practices and Patterns

ML Design Patterns

#!/bin/bash

Common ML design patterns

ml_patterns_config=" [design_patterns] data_pipeline: etl_pattern: @pattern.etl('extract_transform_load') streaming_pattern: @pattern.streaming('real_time_processing') batch_pattern: @pattern.batch('batch_processing')

model_patterns: ensemble_pattern: @pattern.ensemble('multiple_models') transfer_pattern: @pattern.transfer('knowledge_transfer') active_learning: @pattern.active_learning('human_in_loop')

deployment_patterns: canary_deployment: @pattern.canary('gradual_rollout') blue_green: @pattern.blue_green('zero_downtime') shadow_deployment: @pattern.shadow('traffic_mirroring') "

Apply ML design patterns

tsk ml patterns --config <(echo "$ml_patterns_config") --apply

🚀 Getting Started with ML

Quick Start Example

#!/bin/bash

Simple ML example with TuskLang

simple_ml_config=" [simple_classification] data: input: 'iris_dataset.csv' target: 'species' split: 0.8

model: algorithm: 'random_forest' hyperparameters: | n_estimators: 100 max_depth: 10 random_state: 42

training: cross_validation: 5 metrics: ['accuracy', 'precision', 'recall'] save_model: 'iris_classifier.pkl'

prediction: new_data: 'new_iris_data.csv' output: 'predictions.csv' "

Run simple ML pipeline

tsk ml quick-start --config <(echo "$simple_ml_config") --execute

📖 Related Documentation

- Data Pipeline Integration: 097-data-pipeline-bash.md - @ Operator System: 031-sql-operator-bash.md - Performance Optimization: 086-error-handling-bash.md - Monitoring Integration: 083-monitoring-integration-bash.md - Event-Driven Architecture: 094-event-driven-architecture-bash.md

---

Ready to revolutionize your machine learning workflows with TuskLang's intelligent ML capabilities?