🐚 Machine Learning Integration with TuskLang
Machine Learning Integration with TuskLang
🧠 Revolutionary ML - Where Intelligence Meets Configuration
TuskLang transforms machine learning from a complex, code-heavy process into an intelligent, configuration-driven system that adapts to your data and business needs. No more fighting with ML frameworks - TuskLang brings the power of intelligent learning to your fingertips.
"We don't bow to any king" - especially not to bloated ML frameworks that require PhDs to operate.
🎯 Core ML Capabilities
Intelligent Model Training
#!/bin/bashTuskLang-powered ML training pipeline
source tusk.shDynamic model training with intelligent hyperparameter optimization
training_config="
[model_training]
algorithm: @learn('optimal_algorithm', 'random_forest')
hyperparameters: @optimize('hyperparams', 'auto')
training_data: @env('TRAINING_DATA_PATH')
validation_split: @learn('validation_ratio', 0.2)[feature_engineering]
feature_selection: @ml.select_features('correlation_threshold')
feature_scaling: @ml.scale_features('standard_scaler')
feature_creation: @file.read('feature_rules.tsk')
[model_evaluation]
metrics: @ml.evaluate('accuracy_precision_recall')
cross_validation: @ml.cross_validate('k_fold', 5)
performance_tracking: @metrics.model('training_performance')
"
Execute intelligent model training
tsk ml train --config <(echo "$training_config") --auto-optimize
Real-Time Prediction Engine
#!/bin/bashReal-time ML prediction with TuskLang
prediction_config="
[prediction_engine]
model_path: @env('MODEL_PATH', '/models/production')
prediction_endpoint: @env('PREDICTION_URL', 'http://localhost:8080/predict')
batch_size: @optimize('prediction_batch', 100)[prediction_pipeline]
preprocessing: @ml.preprocess('input_data')
feature_extraction: @ml.extract_features('raw_input')
prediction: @ml.predict('processed_features')
postprocessing: @ml.postprocess('predictions')
[prediction_monitoring]
accuracy_tracking: @metrics.prediction('accuracy_score')
latency_monitoring: @metrics.latency('prediction_time')
drift_detection: @ml.detect_drift('data_distribution')
"
Start real-time prediction service
tsk ml predict --config <(echo "$prediction_config") --serve
🎓 Model Training and Development
Automated Model Training
#!/bin/bashAutomated ML model training pipeline
auto_training_config="
[automated_training]
data_preparation:
cleaning: @ml.clean_data('missing_values')
preprocessing: @ml.preprocess('data_types')
validation: @validate.data('quality_checks')model_selection:
algorithms: @file.read('algorithm_candidates.tsk')
evaluation: @ml.evaluate_models('performance_metrics')
selection: @ml.select_best('accuracy_score')
hyperparameter_tuning:
method: @learn('tuning_method', 'bayesian_optimization')
search_space: @file.read('hyperparam_space.tsk')
optimization: @optimize.hyperparams('model_performance')
"
Run automated training
tsk ml auto-train --config <(echo "$auto_training_config") --full-pipeline
Feature Engineering Automation
#!/bin/bashIntelligent feature engineering
feature_config="
[feature_engineering]
automatic_features:
temporal: @ml.create_temporal('date_features')
categorical: @ml.encode_categorical('one_hot_encoding')
numerical: @ml.transform_numerical('log_scaling')feature_selection:
correlation: @ml.select_correlation('threshold', 0.8)
importance: @ml.select_importance('feature_ranking')
dimensionality: @ml.reduce_dimensions('pca')
feature_monitoring:
drift_detection: @ml.detect_feature_drift('distribution_changes')
importance_tracking: @metrics.feature('importance_scores')
quality_assessment: @ml.assess_features('quality_metrics')
"
Execute feature engineering
tsk ml features --config <(echo "$feature_config") --engineer
🔮 Prediction and Inference
Batch Prediction Processing
#!/bin/bashBatch prediction with intelligent batching
batch_prediction_config="
[batch_prediction]
input_data: @env('BATCH_INPUT_PATH')
output_path: @env('PREDICTION_OUTPUT_PATH')
batch_size: @optimize('optimal_batch_size', 1000)[prediction_pipeline]
data_loading: @ml.load_batch('input_files')
preprocessing: @ml.preprocess_batch('data_cleaning')
prediction: @ml.predict_batch('model_inference')
postprocessing: @ml.postprocess_batch('result_formatting')
[performance_optimization]
parallel_processing: @parallel.predictions('multi_core')
memory_optimization: @optimize.memory('batch_processing')
caching: @cache.predictions('intermediate_results')
"
Execute batch predictions
tsk ml batch-predict --config <(echo "$batch_prediction_config") --optimize
Real-Time Inference API
#!/bin/bashReal-time inference API with TuskLang
inference_config="
[inference_api]
endpoint: @env('API_ENDPOINT', '/api/v1/predict')
model_serving: @ml.serve_model('production_model')
load_balancing: @load_balance('prediction_requests')[request_processing]
input_validation: @validate.input('data_schema')
preprocessing: @ml.preprocess_request('input_data')
prediction: @ml.inference('model_prediction')
response_formatting: @ml.format_response('prediction_output')
[api_monitoring]
request_tracking: @metrics.api('request_count')
latency_monitoring: @metrics.latency('response_time')
error_tracking: @metrics.errors('prediction_errors')
"
Start inference API
tsk ml serve --config <(echo "$inference_config") --api
📊 Model Management and Operations
Model Versioning and Deployment
#!/bin/bashIntelligent model versioning and deployment
model_ops_config="
[model_versioning]
version_control: @version.model('model_versions')
experiment_tracking: @ml.track_experiments('mlflow_integration')
model_registry: @registry.models('model_catalog')[model_deployment]
staging_deployment: @deploy.staging('model_testing')
production_deployment: @deploy.production('model_rollout')
rollback_capability: @deploy.rollback('previous_version')
[deployment_monitoring]
health_checks: @health.model('model_availability')
performance_monitoring: @monitor.model('prediction_performance')
resource_usage: @metrics.resources('model_resources')
"
Manage model lifecycle
tsk ml deploy --config <(echo "$model_ops_config") --version-control
Model Performance Monitoring
#!/bin/bashComprehensive model performance monitoring
performance_config="
[performance_monitoring]
accuracy_tracking: @metrics.accuracy('prediction_accuracy')
precision_recall: @metrics.precision_recall('classification_metrics')
regression_metrics: @metrics.regression('mse_mae')[drift_detection]
data_drift: @ml.detect_data_drift('feature_distributions')
concept_drift: @ml.detect_concept_drift('prediction_patterns')
model_decay: @ml.detect_decay('performance_degradation')
[alerting]
performance_alerts: @alert.performance('accuracy_threshold')
drift_alerts: @alert.drift('drift_detected')
resource_alerts: @alert.resources('resource_usage')
"
Monitor model performance
tsk ml monitor --config <(echo "$performance_config") --track-metrics
🔄 ML Pipeline Automation
End-to-End ML Pipeline
#!/bin/bashComplete ML pipeline automation
pipeline_config="
[ml_pipeline]
data_ingestion:
sources: @env('DATA_SOURCES')
validation: @validate.data('quality_checks')
preprocessing: @ml.preprocess('data_cleaning')feature_engineering:
feature_creation: @ml.create_features('feature_rules')
feature_selection: @ml.select_features('importance_threshold')
feature_scaling: @ml.scale_features('normalization')
model_training:
algorithm_selection: @ml.select_algorithm('performance_comparison')
hyperparameter_tuning: @ml.tune_hyperparams('optimization')
model_evaluation: @ml.evaluate_model('validation_metrics')
model_deployment:
model_serving: @ml.serve_model('production_deployment')
performance_monitoring: @ml.monitor_performance('metrics_tracking')
retraining_scheduling: @ml.schedule_retraining('performance_threshold')
"
Execute complete ML pipeline
tsk ml pipeline --config <(echo "$pipeline_config") --end-to-end
Automated Retraining
#!/bin/bashIntelligent model retraining
retraining_config="
[retraining_triggers]
performance_degradation: @ml.trigger_retraining('accuracy_threshold')
data_drift: @ml.trigger_retraining('drift_detection')
time_based: @ml.trigger_retraining('scheduled_retraining')[retraining_process]
data_collection: @ml.collect_new_data('recent_data')
model_retraining: @ml.retrain_model('updated_dataset')
performance_comparison: @ml.compare_models('old_vs_new')
[deployment_strategy]
a_b_testing: @ml.ab_test('model_comparison')
gradual_rollout: @ml.gradual_rollout('percentage_increase')
full_deployment: @ml.full_deployment('complete_switch')
"
Set up automated retraining
tsk ml retrain --config <(echo "$retraining_config") --automated
🎯 Specialized ML Applications
Natural Language Processing
#!/bin/bashNLP pipeline with TuskLang
nlp_config="
[nlp_pipeline]
text_preprocessing:
cleaning: @nlp.clean_text('remove_noise')
tokenization: @nlp.tokenize('word_tokens')
normalization: @nlp.normalize('text_standardization')feature_extraction:
embeddings: @nlp.embeddings('word_vectors')
tf_idf: @nlp.tfidf('document_features')
sentiment: @nlp.sentiment('emotion_analysis')
model_training:
classification: @nlp.train_classifier('text_classification')
generation: @nlp.train_generator('text_generation')
translation: @nlp.train_translator('language_translation')
"
Execute NLP pipeline
tsk ml nlp --config <(echo "$nlp_config") --process-text
Computer Vision
#!/bin/bashComputer vision pipeline
vision_config="
[vision_pipeline]
image_preprocessing:
resizing: @cv.resize('target_dimensions')
normalization: @cv.normalize('pixel_values')
augmentation: @cv.augment('data_augmentation')feature_extraction:
cnn_features: @cv.cnn_features('convolutional_layers')
object_detection: @cv.detect_objects('bounding_boxes')
segmentation: @cv.segment_image('pixel_classification')
model_training:
classification: @cv.train_classifier('image_classification')
detection: @cv.train_detector('object_detection')
segmentation: @cv.train_segmenter('semantic_segmentation')
"
Execute computer vision pipeline
tsk ml vision --config <(echo "$vision_config") --process-images
Time Series Forecasting
#!/bin/bashTime series forecasting
timeseries_config="
[timeseries_forecasting]
data_preparation:
seasonality: @ts.detect_seasonality('seasonal_patterns')
trend_analysis: @ts.analyze_trend('trend_components')
stationarity: @ts.check_stationarity('stationarity_test')model_training:
arima: @ts.train_arima('autoregressive_model')
lstm: @ts.train_lstm('neural_forecasting')
prophet: @ts.train_prophet('facebook_prophet')
forecasting:
short_term: @ts.forecast_short('next_24_hours')
medium_term: @ts.forecast_medium('next_week')
long_term: @ts.forecast_long('next_month')
"
Execute time series forecasting
tsk ml timeseries --config <(echo "$timeseries_config") --forecast
🔧 Advanced ML Features
Ensemble Learning
#!/bin/bashEnsemble learning with multiple models
ensemble_config="
[ensemble_learning]
base_models:
model1: @ml.train_model('random_forest')
model2: @ml.train_model('gradient_boosting')
model3: @ml.train_model('neural_network')ensemble_methods:
voting: @ml.ensemble_voting('majority_vote')
stacking: @ml.ensemble_stacking('meta_learner')
blending: @ml.ensemble_blending('weighted_average')
performance_optimization:
model_selection: @ml.select_ensemble('best_combination')
weight_optimization: @ml.optimize_weights('ensemble_weights')
diversity_measurement: @ml.measure_diversity('model_diversity')
"
Create ensemble model
tsk ml ensemble --config <(echo "$ensemble_config") --combine
Transfer Learning
#!/bin/bashTransfer learning for domain adaptation
transfer_config="
[transfer_learning]
pre_trained_models:
source_model: @ml.load_pretrained('imagenet_model')
target_domain: @env('TARGET_DOMAIN_DATA')
adaptation_method: @ml.adapt_model('fine_tuning')adaptation_strategy:
feature_extraction: @ml.extract_features('frozen_layers')
fine_tuning: @ml.fine_tune('trainable_layers')
domain_adaptation: @ml.adapt_domain('domain_alignment')
performance_evaluation:
source_performance: @ml.evaluate_source('source_metrics')
target_performance: @ml.evaluate_target('target_metrics')
adaptation_effectiveness: @ml.evaluate_adaptation('improvement')
"
Execute transfer learning
tsk ml transfer --config <(echo "$transfer_config") --adapt
🛠️ ML Operations and Monitoring
MLOps Pipeline
#!/bin/bashComplete MLOps pipeline
mlops_config="
[mlops_pipeline]
development:
experiment_tracking: @mlops.track_experiments('mlflow')
version_control: @mlops.version_models('git_lfs')
testing: @mlops.test_models('unit_integration')deployment:
containerization: @mlops.containerize('docker_images')
orchestration: @mlops.orchestrate('kubernetes')
monitoring: @mlops.monitor('prometheus_grafana')
operations:
scaling: @mlops.scale('auto_scaling')
backup: @mlops.backup('model_backups')
disaster_recovery: @mlops.recovery('failover_strategy')
"
Execute MLOps pipeline
tsk mlops --config <(echo "$mlops_config") --full-pipeline
Model Explainability
#!/bin/bashModel explainability and interpretability
explainability_config="
[model_explainability]
feature_importance:
permutation_importance: @explain.permutation('feature_ranking')
shap_values: @explain.shap('feature_contributions')
lime_explanations: @explain.lime('local_explanations')interpretability:
decision_trees: @explain.decision_tree('tree_structure')
rule_extraction: @explain.extract_rules('if_then_rules')
counterfactuals: @explain.counterfactuals('what_if_scenarios')
visualization:
feature_plots: @explain.plot_features('importance_charts')
partial_dependence: @explain.partial_dependence('feature_effects')
interaction_plots: @explain.interactions('feature_interactions')
"
Generate model explanations
tsk ml explain --config <(echo "$explainability_config") --interpret
🔒 ML Security and Privacy
Privacy-Preserving ML
#!/bin/bashPrivacy-preserving machine learning
privacy_config="
[privacy_preserving_ml]
differential_privacy:
noise_addition: @privacy.add_noise('gaussian_noise')
privacy_budget: @privacy.budget('epsilon_delta')
composition_theorems: @privacy.compose('budget_management')federated_learning:
distributed_training: @privacy.federated('local_training')
secure_aggregation: @privacy.secure_aggregate('encrypted_aggregation')
privacy_guarantees: @privacy.guarantees('privacy_protection')
homomorphic_encryption:
encrypted_computation: @privacy.homomorphic('encrypted_ml')
secure_inference: @privacy.secure_inference('encrypted_predictions')
key_management: @privacy.key_management('encryption_keys')
"
Apply privacy-preserving techniques
tsk ml privacy --config <(echo "$privacy_config") --protect
📚 Best Practices and Patterns
ML Design Patterns
#!/bin/bashCommon ML design patterns
ml_patterns_config="
[design_patterns]
data_pipeline:
etl_pattern: @pattern.etl('extract_transform_load')
streaming_pattern: @pattern.streaming('real_time_processing')
batch_pattern: @pattern.batch('batch_processing')model_patterns:
ensemble_pattern: @pattern.ensemble('multiple_models')
transfer_pattern: @pattern.transfer('knowledge_transfer')
active_learning: @pattern.active_learning('human_in_loop')
deployment_patterns:
canary_deployment: @pattern.canary('gradual_rollout')
blue_green: @pattern.blue_green('zero_downtime')
shadow_deployment: @pattern.shadow('traffic_mirroring')
"
Apply ML design patterns
tsk ml patterns --config <(echo "$ml_patterns_config") --apply
🚀 Getting Started with ML
Quick Start Example
#!/bin/bashSimple ML example with TuskLang
simple_ml_config="
[simple_classification]
data:
input: 'iris_dataset.csv'
target: 'species'
split: 0.8model:
algorithm: 'random_forest'
hyperparameters: |
n_estimators: 100
max_depth: 10
random_state: 42
training:
cross_validation: 5
metrics: ['accuracy', 'precision', 'recall']
save_model: 'iris_classifier.pkl'
prediction:
new_data: 'new_iris_data.csv'
output: 'predictions.csv'
"
Run simple ML pipeline
tsk ml quick-start --config <(echo "$simple_ml_config") --execute
📖 Related Documentation
- Data Pipeline Integration: 097-data-pipeline-bash.md
- @ Operator System: 031-sql-operator-bash.md
- Performance Optimization: 086-error-handling-bash.md
- Monitoring Integration: 083-monitoring-integration-bash.md
- Event-Driven Architecture: 094-event-driven-architecture-bash.md
---
Ready to revolutionize your machine learning workflows with TuskLang's intelligent ML capabilities?