🐚 Data Science Integration with TuskLang
Data Science Integration with TuskLang
📊 Revolutionary Data Science - Where Intelligence Meets Analytics
TuskLang transforms data science from a complex, tool-heavy process into an intelligent, configuration-driven system that adapts to your analytical needs. No more fighting with data science frameworks - TuskLang brings the power of intelligent analytics to your fingertips.
"We don't bow to any king" - especially not to bloated data science platforms that require armies of data scientists to operate.
🎯 Core Data Science Capabilities
Intelligent Data Analysis Pipeline
#!/bin/bashTuskLang-powered data science system
source tusk.shDynamic data analysis with intelligent optimization
datascience_config="
[data_analysis_pipeline]
data_ingestion:
data_sources: @datascience.connect_sources('databases_apis_files')
data_validation: @datascience.validate_data('quality_checks')
data_cleaning: @datascience.clean_data('missing_values_outliers')exploratory_analysis:
statistical_summary: @datascience.statistical_summary('descriptive_stats')
correlation_analysis: @datascience.correlation_analysis('feature_correlations')
distribution_analysis: @datascience.distribution_analysis('data_distributions')
feature_engineering:
feature_selection: @datascience.select_features('importance_ranking')
feature_creation: @datascience.create_features('domain_knowledge')
feature_scaling: @datascience.scale_features('normalization_standardization')
"
Execute intelligent data analysis
tsk datascience analyze --config <(echo "$datascience_config") --auto-optimize
Statistical Modeling Framework
#!/bin/bashStatistical modeling with TuskLang
statistical_config="
[statistical_modeling]
model_selection:
regression_models: @datascience.regression_models('linear_logistic')
classification_models: @datascience.classification_models('svm_random_forest')
time_series_models: @datascience.timeseries_models('arima_prophet')model_evaluation:
cross_validation: @datascience.cross_validate('k_fold_validation')
performance_metrics: @datascience.performance_metrics('accuracy_precision_recall')
model_comparison: @datascience.compare_models('model_benchmarking')
model_interpretation:
feature_importance: @datascience.feature_importance('model_interpretability')
coefficient_analysis: @datascience.coefficient_analysis('statistical_significance')
prediction_explanations: @datascience.explain_predictions('shap_lime')
"
Execute statistical modeling
tsk datascience model --config <(echo "$statistical_config") --statistical
📈 Data Visualization and Reporting
Interactive Visualization
#!/bin/bashInteractive data visualization
visualization_config="
[data_visualization]
chart_types:
time_series_plots: @datascience.time_series('trend_analysis')
scatter_plots: @datascience.scatter_plots('correlation_visualization')
heatmaps: @datascience.heatmaps('correlation_matrices')interactive_features:
zoom_pan: @datascience.interactive_zoom('plot_interaction')
filtering: @datascience.interactive_filter('data_filtering')
drill_down: @datascience.drill_down('hierarchical_exploration')
dashboard_creation:
dashboard_layout: @datascience.dashboard_layout('responsive_design')
real_time_updates: @datascience.real_time_updates('live_data')
export_capabilities: @datascience.export_charts('png_pdf_svg')
"
Execute data visualization
tsk datascience visualize --config <(echo "$visualization_config") --interactive
Automated Reporting
#!/bin/bashAutomated reporting system
reporting_config="
[automated_reporting]
report_generation:
template_engine: @datascience.report_templates('jinja2_templates')
data_integration: @datascience.integrate_data('report_data')
chart_integration: @datascience.integrate_charts('report_charts')report_distribution:
email_distribution: @datascience.email_reports('automated_emails')
web_publishing: @datascience.publish_web('web_reports')
mobile_access: @datascience.mobile_reports('mobile_apps')
scheduling_automation:
report_scheduling: @datascience.schedule_reports('cron_scheduling')
conditional_reports: @datascience.conditional_reports('trigger_based')
report_archiving: @datascience.archive_reports('historical_reports')
"
Execute automated reporting
tsk datascience report --config <(echo "$reporting_config") --automate
🔬 Advanced Analytics
Predictive Analytics
#!/bin/bashPredictive analytics framework
predictive_config="
[predictive_analytics]
forecasting_models:
time_series_forecasting: @datascience.forecast_timeseries('arima_prophet')
demand_forecasting: @datascience.forecast_demand('business_forecasting')
trend_prediction: @datascience.predict_trends('trend_analysis')classification_prediction:
customer_segmentation: @datascience.segment_customers('clustering_analysis')
churn_prediction: @datascience.predict_churn('customer_churn')
fraud_detection: @datascience.detect_fraud('anomaly_detection')
regression_prediction:
price_prediction: @datascience.predict_prices('pricing_models')
sales_forecasting: @datascience.forecast_sales('sales_prediction')
risk_assessment: @datascience.assess_risk('risk_modeling')
"
Execute predictive analytics
tsk datascience predict --config <(echo "$predictive_config") --forecast
Machine Learning Pipeline
#!/bin/bashMachine learning pipeline automation
ml_config="
[machine_learning_pipeline]
model_training:
algorithm_selection: @datascience.select_algorithm('ml_algorithm')
hyperparameter_tuning: @datascience.tune_hyperparams('grid_search_bayesian')
model_validation: @datascience.validate_model('validation_strategy')model_deployment:
model_serving: @datascience.serve_model('api_endpoints')
batch_prediction: @datascience.batch_predict('batch_processing')
real_time_prediction: @datascience.realtime_predict('streaming_prediction')
model_monitoring:
performance_monitoring: @datascience.monitor_performance('model_metrics')
drift_detection: @datascience.detect_drift('data_concept_drift')
model_retraining: @datascience.retrain_model('automated_retraining')
"
Execute ML pipeline
tsk datascience ml --config <(echo "$ml_config") --pipeline
📊 Data Processing and ETL
Data Pipeline Automation
#!/bin/bashData pipeline automation
pipeline_config="
[data_pipeline]
etl_processes:
data_extraction: @datascience.extract_data('source_systems')
data_transformation: @datascience.transform_data('data_cleaning')
data_loading: @datascience.load_data('target_systems')data_quality:
quality_checks: @datascience.quality_checks('data_validation')
data_profiling: @datascience.profile_data('data_characteristics')
quality_monitoring: @datascience.monitor_quality('quality_metrics')
data_governance:
data_catalog: @datascience.catalog_data('metadata_management')
lineage_tracking: @datascience.track_lineage('data_lineage')
access_control: @datascience.control_access('data_permissions')
"
Execute data pipeline
tsk datascience pipeline --config <(echo "$pipeline_config") --automate
Big Data Processing
#!/bin/bashBig data processing capabilities
bigdata_config="
[big_data_processing]
distributed_computing:
spark_integration: @datascience.integrate_spark('distributed_processing')
hadoop_integration: @datascience.integrate_hadoop('hdfs_processing')
streaming_processing: @datascience.stream_processing('real_time_data')data_storage:
data_lake: @datascience.data_lake('raw_data_storage')
data_warehouse: @datascience.data_warehouse('structured_data')
data_mart: @datascience.data_mart('business_units')
performance_optimization:
query_optimization: @datascience.optimize_queries('sql_optimization')
caching_strategies: @datascience.cache_strategies('data_caching')
partitioning: @datascience.partition_data('data_partitioning')
"
Execute big data processing
tsk datascience bigdata --config <(echo "$bigdata_config") --process
🔍 Exploratory Data Analysis (EDA)
Automated EDA
#!/bin/bashAutomated exploratory data analysis
eda_config="
[exploratory_analysis]
data_overview:
data_summary: @datascience.summarize_data('statistical_summary')
data_types: @datascience.analyze_types('data_type_analysis')
missing_values: @datascience.analyze_missing('missing_data_analysis')statistical_analysis:
descriptive_stats: @datascience.descriptive_stats('summary_statistics')
correlation_analysis: @datascience.correlation_analysis('correlation_study')
distribution_analysis: @datascience.distribution_analysis('distribution_study')
visual_analysis:
univariate_analysis: @datascience.univariate_analysis('single_variable')
bivariate_analysis: @datascience.bivariate_analysis('two_variables')
multivariate_analysis: @datascience.multivariate_analysis('multiple_variables')
"
Execute automated EDA
tsk datascience eda --config <(echo "$eda_config") --explore
Data Profiling
#!/bin/bashComprehensive data profiling
profiling_config="
[data_profiling]
profile_generation:
column_profiling: @datascience.profile_columns('column_analysis')
table_profiling: @datascience.profile_tables('table_analysis')
relationship_profiling: @datascience.profile_relationships('relationship_analysis')quality_assessment:
completeness_analysis: @datascience.assess_completeness('data_completeness')
accuracy_analysis: @datascience.assess_accuracy('data_accuracy')
consistency_analysis: @datascience.assess_consistency('data_consistency')
anomaly_detection:
outlier_detection: @datascience.detect_outliers('statistical_outliers')
pattern_anomalies: @datascience.detect_patterns('pattern_analysis')
data_drift: @datascience.detect_drift('data_drift_analysis')
"
Execute data profiling
tsk datascience profile --config <(echo "$profiling_config") --profile
📈 Business Intelligence
BI Dashboard Creation
#!/bin/bashBusiness intelligence dashboard creation
bi_config="
[bi_dashboards]
dashboard_components:
kpi_widgets: @datascience.kpi_widgets('key_performance_indicators')
chart_widgets: @datascience.chart_widgets('data_visualizations')
table_widgets: @datascience.table_widgets('data_tables')interactive_features:
drill_down: @datascience.drill_down('hierarchical_navigation')
filtering: @datascience.filter_dashboard('data_filtering')
sorting: @datascience.sort_data('data_sorting')
dashboard_management:
layout_management: @datascience.manage_layout('dashboard_layout')
user_permissions: @datascience.user_permissions('access_control')
dashboard_sharing: @datascience.share_dashboard('collaboration')
"
Execute BI dashboard creation
tsk datascience bi --config <(echo "$bi_config") --dashboard
Ad Hoc Analysis
#!/bin/bashAd hoc analysis capabilities
adhoc_config="
[ad_hoc_analysis]
query_builder:
visual_query_builder: @datascience.visual_queries('drag_drop_queries')
sql_editor: @datascience.sql_editor('sql_queries')
natural_language: @datascience.natural_language('nl_queries')analysis_tools:
pivot_tables: @datascience.pivot_tables('data_pivoting')
cross_tabulation: @datascience.cross_tab('frequency_analysis')
statistical_tests: @datascience.statistical_tests('hypothesis_testing')
result_management:
result_saving: @datascience.save_results('analysis_results')
result_sharing: @datascience.share_results('collaboration')
result_scheduling: @datascience.schedule_results('automated_analysis')
"
Execute ad hoc analysis
tsk datascience adhoc --config <(echo "$adhoc_config") --analyze
🔬 Statistical Analysis
Advanced Statistics
#!/bin/bashAdvanced statistical analysis
statistics_config="
[statistical_analysis]
hypothesis_testing:
t_tests: @datascience.t_tests('mean_comparison')
chi_square_tests: @datascience.chi_square('independence_tests')
anova_tests: @datascience.anova_tests('variance_analysis')regression_analysis:
linear_regression: @datascience.linear_regression('linear_models')
logistic_regression: @datascience.logistic_regression('classification_models')
multiple_regression: @datascience.multiple_regression('multivariate_models')
time_series_analysis:
trend_analysis: @datascience.trend_analysis('trend_identification')
seasonal_decomposition: @datascience.seasonal_decomposition('seasonality_analysis')
forecasting_models: @datascience.forecasting_models('prediction_models')
"
Execute statistical analysis
tsk datascience statistics --config <(echo "$statistics_config") --analyze
Experimental Design
#!/bin/bashExperimental design and analysis
experimental_config="
[experimental_design]
design_methods:
randomized_control: @datascience.randomized_control('rct_design')
factorial_design: @datascience.factorial_design('factorial_experiments')
block_design: @datascience.block_design('blocked_experiments')sample_size_calculation:
power_analysis: @datascience.power_analysis('statistical_power')
effect_size: @datascience.effect_size('effect_estimation')
sample_planning: @datascience.sample_planning('sample_strategy')
experiment_analysis:
treatment_effects: @datascience.treatment_effects('causal_inference')
interaction_effects: @datascience.interaction_effects('interaction_analysis')
experimental_validity: @datascience.experimental_validity('validity_assessment')
"
Execute experimental design
tsk datascience experimental --config <(echo "$experimental_config") --design
🛠️ Data Science Tools Integration
Python Integration
#!/bin/bashPython data science tools integration
python_config="
[python_integration]
data_science_libraries:
pandas_integration: @datascience.integrate_pandas('data_manipulation')
numpy_integration: @datascience.integrate_numpy('numerical_computing')
scipy_integration: @datascience.integrate_scipy('scientific_computing')machine_learning:
scikit_learn: @datascience.integrate_sklearn('ml_algorithms')
tensorflow: @datascience.integrate_tensorflow('deep_learning')
pytorch: @datascience.integrate_pytorch('neural_networks')
visualization:
matplotlib: @datascience.integrate_matplotlib('static_plots')
seaborn: @datascience.integrate_seaborn('statistical_plots')
plotly: @datascience.integrate_plotly('interactive_plots')
"
Execute Python integration
tsk datascience python --config <(echo "$python_config") --integrate
R Integration
#!/bin/bashR statistical computing integration
r_config="
[r_integration]
statistical_packages:
base_r: @datascience.integrate_base_r('core_statistics')
tidyverse: @datascience.integrate_tidyverse('data_science')
caret: @datascience.integrate_caret('machine_learning')specialized_analysis:
survival_analysis: @datascience.survival_analysis('time_to_event')
mixed_models: @datascience.mixed_models('hierarchical_data')
bayesian_analysis: @datascience.bayesian_analysis('bayesian_inference')
r_visualization:
ggplot2: @datascience.integrate_ggplot2('grammar_graphics')
shiny: @datascience.integrate_shiny('interactive_apps')
rmarkdown: @datascience.integrate_rmarkdown('reproducible_reports')
"
Execute R integration
tsk datascience r --config <(echo "$r_config") --integrate
📚 Data Science Best Practices
Reproducible Research
#!/bin/bashReproducible research practices
reproducible_config="
[reproducible_research]
version_control:
code_versioning: @datascience.version_code('git_repositories')
data_versioning: @datascience.version_data('data_versioning')
environment_versioning: @datascience.version_environment('conda_docker')documentation:
code_documentation: @datascience.document_code('code_comments')
methodology_documentation: @datascience.document_methodology('research_methods')
result_documentation: @datascience.document_results('findings_documentation')
reproducibility_tools:
jupyter_notebooks: @datascience.jupyter_notebooks('interactive_notebooks')
rmarkdown: @datascience.rmarkdown('reproducible_reports')
workflow_automation: @datascience.workflow_automation('automated_analysis')
"
Implement reproducible research
tsk datascience reproducible --config <(echo "$reproducible_config") --implement
🚀 Getting Started with Data Science
Quick Start Example
#!/bin/bashSimple data science example with TuskLang
simple_datascience_config="
[basic_analysis]
data_source:
file: 'customer_data.csv'
format: 'csv'
encoding: 'utf-8'analysis_steps:
- data_cleaning: 'remove_missing_values'
- exploratory_analysis: 'summary_statistics'
- visualization: 'histogram_scatter_plots'
- modeling: 'linear_regression'
output:
report: 'analysis_report.html'
charts: 'visualizations/'
model: 'trained_model.pkl'
automation:
schedule: 'daily_analysis'
email_report: 'stakeholders@company.com'
dashboard_update: 'real_time'
"
Run simple data science project
tsk datascience quick-start --config <(echo "$simple_datascience_config") --execute
📖 Related Documentation
- DevOps Automation: 103-devops-automation-bash.md
- Cybersecurity Integration: 102-cybersecurity-bash.md
- @ Operator System: 031-sql-operator-bash.md
- Error Handling: 086-error-handling-bash.md
- Monitoring Integration: 083-monitoring-integration-bash.md
---
Ready to revolutionize your data science workflows with TuskLang's intelligent analytics capabilities?