🐚 Data Science Integration with TuskLang

Bash SDK Documentation

Data Science Integration with TuskLang

📊 Revolutionary Data Science - Where Intelligence Meets Analytics

TuskLang transforms data science from a complex, tool-heavy process into an intelligent, configuration-driven system that adapts to your analytical needs. No more fighting with data science frameworks - TuskLang brings the power of intelligent analytics to your fingertips.

"We don't bow to any king" - especially not to bloated data science platforms that require armies of data scientists to operate.

🎯 Core Data Science Capabilities

Intelligent Data Analysis Pipeline

#!/bin/bash

TuskLang-powered data science system

source tusk.sh

Dynamic data analysis with intelligent optimization

datascience_config=" [data_analysis_pipeline] data_ingestion: data_sources: @datascience.connect_sources('databases_apis_files') data_validation: @datascience.validate_data('quality_checks') data_cleaning: @datascience.clean_data('missing_values_outliers')

exploratory_analysis: statistical_summary: @datascience.statistical_summary('descriptive_stats') correlation_analysis: @datascience.correlation_analysis('feature_correlations') distribution_analysis: @datascience.distribution_analysis('data_distributions')

feature_engineering: feature_selection: @datascience.select_features('importance_ranking') feature_creation: @datascience.create_features('domain_knowledge') feature_scaling: @datascience.scale_features('normalization_standardization') "

Execute intelligent data analysis

tsk datascience analyze --config <(echo "$datascience_config") --auto-optimize

Statistical Modeling Framework

#!/bin/bash

Statistical modeling with TuskLang

statistical_config=" [statistical_modeling] model_selection: regression_models: @datascience.regression_models('linear_logistic') classification_models: @datascience.classification_models('svm_random_forest') time_series_models: @datascience.timeseries_models('arima_prophet')

model_evaluation: cross_validation: @datascience.cross_validate('k_fold_validation') performance_metrics: @datascience.performance_metrics('accuracy_precision_recall') model_comparison: @datascience.compare_models('model_benchmarking')

model_interpretation: feature_importance: @datascience.feature_importance('model_interpretability') coefficient_analysis: @datascience.coefficient_analysis('statistical_significance') prediction_explanations: @datascience.explain_predictions('shap_lime') "

Execute statistical modeling

tsk datascience model --config <(echo "$statistical_config") --statistical

📈 Data Visualization and Reporting

Interactive Visualization

#!/bin/bash

Interactive data visualization

visualization_config=" [data_visualization] chart_types: time_series_plots: @datascience.time_series('trend_analysis') scatter_plots: @datascience.scatter_plots('correlation_visualization') heatmaps: @datascience.heatmaps('correlation_matrices')

interactive_features: zoom_pan: @datascience.interactive_zoom('plot_interaction') filtering: @datascience.interactive_filter('data_filtering') drill_down: @datascience.drill_down('hierarchical_exploration')

dashboard_creation: dashboard_layout: @datascience.dashboard_layout('responsive_design') real_time_updates: @datascience.real_time_updates('live_data') export_capabilities: @datascience.export_charts('png_pdf_svg') "

Execute data visualization

tsk datascience visualize --config <(echo "$visualization_config") --interactive

Automated Reporting

#!/bin/bash

Automated reporting system

reporting_config=" [automated_reporting] report_generation: template_engine: @datascience.report_templates('jinja2_templates') data_integration: @datascience.integrate_data('report_data') chart_integration: @datascience.integrate_charts('report_charts')

report_distribution: email_distribution: @datascience.email_reports('automated_emails') web_publishing: @datascience.publish_web('web_reports') mobile_access: @datascience.mobile_reports('mobile_apps')

scheduling_automation: report_scheduling: @datascience.schedule_reports('cron_scheduling') conditional_reports: @datascience.conditional_reports('trigger_based') report_archiving: @datascience.archive_reports('historical_reports') "

Execute automated reporting

tsk datascience report --config <(echo "$reporting_config") --automate

🔬 Advanced Analytics

Predictive Analytics

#!/bin/bash

Predictive analytics framework

predictive_config=" [predictive_analytics] forecasting_models: time_series_forecasting: @datascience.forecast_timeseries('arima_prophet') demand_forecasting: @datascience.forecast_demand('business_forecasting') trend_prediction: @datascience.predict_trends('trend_analysis')

classification_prediction: customer_segmentation: @datascience.segment_customers('clustering_analysis') churn_prediction: @datascience.predict_churn('customer_churn') fraud_detection: @datascience.detect_fraud('anomaly_detection')

regression_prediction: price_prediction: @datascience.predict_prices('pricing_models') sales_forecasting: @datascience.forecast_sales('sales_prediction') risk_assessment: @datascience.assess_risk('risk_modeling') "

Execute predictive analytics

tsk datascience predict --config <(echo "$predictive_config") --forecast

Machine Learning Pipeline

#!/bin/bash

Machine learning pipeline automation

ml_config=" [machine_learning_pipeline] model_training: algorithm_selection: @datascience.select_algorithm('ml_algorithm') hyperparameter_tuning: @datascience.tune_hyperparams('grid_search_bayesian') model_validation: @datascience.validate_model('validation_strategy')

model_deployment: model_serving: @datascience.serve_model('api_endpoints') batch_prediction: @datascience.batch_predict('batch_processing') real_time_prediction: @datascience.realtime_predict('streaming_prediction')

model_monitoring: performance_monitoring: @datascience.monitor_performance('model_metrics') drift_detection: @datascience.detect_drift('data_concept_drift') model_retraining: @datascience.retrain_model('automated_retraining') "

Execute ML pipeline

tsk datascience ml --config <(echo "$ml_config") --pipeline

📊 Data Processing and ETL

Data Pipeline Automation

#!/bin/bash

Data pipeline automation

pipeline_config=" [data_pipeline] etl_processes: data_extraction: @datascience.extract_data('source_systems') data_transformation: @datascience.transform_data('data_cleaning') data_loading: @datascience.load_data('target_systems')

data_quality: quality_checks: @datascience.quality_checks('data_validation') data_profiling: @datascience.profile_data('data_characteristics') quality_monitoring: @datascience.monitor_quality('quality_metrics')

data_governance: data_catalog: @datascience.catalog_data('metadata_management') lineage_tracking: @datascience.track_lineage('data_lineage') access_control: @datascience.control_access('data_permissions') "

Execute data pipeline

tsk datascience pipeline --config <(echo "$pipeline_config") --automate

Big Data Processing

#!/bin/bash

Big data processing capabilities

bigdata_config=" [big_data_processing] distributed_computing: spark_integration: @datascience.integrate_spark('distributed_processing') hadoop_integration: @datascience.integrate_hadoop('hdfs_processing') streaming_processing: @datascience.stream_processing('real_time_data')

data_storage: data_lake: @datascience.data_lake('raw_data_storage') data_warehouse: @datascience.data_warehouse('structured_data') data_mart: @datascience.data_mart('business_units')

performance_optimization: query_optimization: @datascience.optimize_queries('sql_optimization') caching_strategies: @datascience.cache_strategies('data_caching') partitioning: @datascience.partition_data('data_partitioning') "

Execute big data processing

tsk datascience bigdata --config <(echo "$bigdata_config") --process

🔍 Exploratory Data Analysis (EDA)

Automated EDA

#!/bin/bash

Automated exploratory data analysis

eda_config=" [exploratory_analysis] data_overview: data_summary: @datascience.summarize_data('statistical_summary') data_types: @datascience.analyze_types('data_type_analysis') missing_values: @datascience.analyze_missing('missing_data_analysis')

statistical_analysis: descriptive_stats: @datascience.descriptive_stats('summary_statistics') correlation_analysis: @datascience.correlation_analysis('correlation_study') distribution_analysis: @datascience.distribution_analysis('distribution_study')

visual_analysis: univariate_analysis: @datascience.univariate_analysis('single_variable') bivariate_analysis: @datascience.bivariate_analysis('two_variables') multivariate_analysis: @datascience.multivariate_analysis('multiple_variables') "

Execute automated EDA

tsk datascience eda --config <(echo "$eda_config") --explore

Data Profiling

#!/bin/bash

Comprehensive data profiling

profiling_config=" [data_profiling] profile_generation: column_profiling: @datascience.profile_columns('column_analysis') table_profiling: @datascience.profile_tables('table_analysis') relationship_profiling: @datascience.profile_relationships('relationship_analysis')

quality_assessment: completeness_analysis: @datascience.assess_completeness('data_completeness') accuracy_analysis: @datascience.assess_accuracy('data_accuracy') consistency_analysis: @datascience.assess_consistency('data_consistency')

anomaly_detection: outlier_detection: @datascience.detect_outliers('statistical_outliers') pattern_anomalies: @datascience.detect_patterns('pattern_analysis') data_drift: @datascience.detect_drift('data_drift_analysis') "

Execute data profiling

tsk datascience profile --config <(echo "$profiling_config") --profile

📈 Business Intelligence

BI Dashboard Creation

#!/bin/bash

Business intelligence dashboard creation

bi_config=" [bi_dashboards] dashboard_components: kpi_widgets: @datascience.kpi_widgets('key_performance_indicators') chart_widgets: @datascience.chart_widgets('data_visualizations') table_widgets: @datascience.table_widgets('data_tables')

interactive_features: drill_down: @datascience.drill_down('hierarchical_navigation') filtering: @datascience.filter_dashboard('data_filtering') sorting: @datascience.sort_data('data_sorting')

dashboard_management: layout_management: @datascience.manage_layout('dashboard_layout') user_permissions: @datascience.user_permissions('access_control') dashboard_sharing: @datascience.share_dashboard('collaboration') "

Execute BI dashboard creation

tsk datascience bi --config <(echo "$bi_config") --dashboard

Ad Hoc Analysis

#!/bin/bash

Ad hoc analysis capabilities

adhoc_config=" [ad_hoc_analysis] query_builder: visual_query_builder: @datascience.visual_queries('drag_drop_queries') sql_editor: @datascience.sql_editor('sql_queries') natural_language: @datascience.natural_language('nl_queries')

analysis_tools: pivot_tables: @datascience.pivot_tables('data_pivoting') cross_tabulation: @datascience.cross_tab('frequency_analysis') statistical_tests: @datascience.statistical_tests('hypothesis_testing')

result_management: result_saving: @datascience.save_results('analysis_results') result_sharing: @datascience.share_results('collaboration') result_scheduling: @datascience.schedule_results('automated_analysis') "

Execute ad hoc analysis

tsk datascience adhoc --config <(echo "$adhoc_config") --analyze

🔬 Statistical Analysis

Advanced Statistics

#!/bin/bash

Advanced statistical analysis

statistics_config=" [statistical_analysis] hypothesis_testing: t_tests: @datascience.t_tests('mean_comparison') chi_square_tests: @datascience.chi_square('independence_tests') anova_tests: @datascience.anova_tests('variance_analysis')

regression_analysis: linear_regression: @datascience.linear_regression('linear_models') logistic_regression: @datascience.logistic_regression('classification_models') multiple_regression: @datascience.multiple_regression('multivariate_models')

time_series_analysis: trend_analysis: @datascience.trend_analysis('trend_identification') seasonal_decomposition: @datascience.seasonal_decomposition('seasonality_analysis') forecasting_models: @datascience.forecasting_models('prediction_models') "

Execute statistical analysis

tsk datascience statistics --config <(echo "$statistics_config") --analyze

Experimental Design

#!/bin/bash

Experimental design and analysis

experimental_config=" [experimental_design] design_methods: randomized_control: @datascience.randomized_control('rct_design') factorial_design: @datascience.factorial_design('factorial_experiments') block_design: @datascience.block_design('blocked_experiments')

sample_size_calculation: power_analysis: @datascience.power_analysis('statistical_power') effect_size: @datascience.effect_size('effect_estimation') sample_planning: @datascience.sample_planning('sample_strategy')

experiment_analysis: treatment_effects: @datascience.treatment_effects('causal_inference') interaction_effects: @datascience.interaction_effects('interaction_analysis') experimental_validity: @datascience.experimental_validity('validity_assessment') "

Execute experimental design

tsk datascience experimental --config <(echo "$experimental_config") --design

🛠️ Data Science Tools Integration

Python Integration

#!/bin/bash

Python data science tools integration

python_config=" [python_integration] data_science_libraries: pandas_integration: @datascience.integrate_pandas('data_manipulation') numpy_integration: @datascience.integrate_numpy('numerical_computing') scipy_integration: @datascience.integrate_scipy('scientific_computing')

machine_learning: scikit_learn: @datascience.integrate_sklearn('ml_algorithms') tensorflow: @datascience.integrate_tensorflow('deep_learning') pytorch: @datascience.integrate_pytorch('neural_networks')

visualization: matplotlib: @datascience.integrate_matplotlib('static_plots') seaborn: @datascience.integrate_seaborn('statistical_plots') plotly: @datascience.integrate_plotly('interactive_plots') "

Execute Python integration

tsk datascience python --config <(echo "$python_config") --integrate

R Integration

#!/bin/bash

R statistical computing integration

r_config=" [r_integration] statistical_packages: base_r: @datascience.integrate_base_r('core_statistics') tidyverse: @datascience.integrate_tidyverse('data_science') caret: @datascience.integrate_caret('machine_learning')

specialized_analysis: survival_analysis: @datascience.survival_analysis('time_to_event') mixed_models: @datascience.mixed_models('hierarchical_data') bayesian_analysis: @datascience.bayesian_analysis('bayesian_inference')

r_visualization: ggplot2: @datascience.integrate_ggplot2('grammar_graphics') shiny: @datascience.integrate_shiny('interactive_apps') rmarkdown: @datascience.integrate_rmarkdown('reproducible_reports') "

Execute R integration

tsk datascience r --config <(echo "$r_config") --integrate

📚 Data Science Best Practices

Reproducible Research

#!/bin/bash

Reproducible research practices

reproducible_config=" [reproducible_research] version_control: code_versioning: @datascience.version_code('git_repositories') data_versioning: @datascience.version_data('data_versioning') environment_versioning: @datascience.version_environment('conda_docker')

documentation: code_documentation: @datascience.document_code('code_comments') methodology_documentation: @datascience.document_methodology('research_methods') result_documentation: @datascience.document_results('findings_documentation')

reproducibility_tools: jupyter_notebooks: @datascience.jupyter_notebooks('interactive_notebooks') rmarkdown: @datascience.rmarkdown('reproducible_reports') workflow_automation: @datascience.workflow_automation('automated_analysis') "

Implement reproducible research

tsk datascience reproducible --config <(echo "$reproducible_config") --implement

🚀 Getting Started with Data Science

Quick Start Example

#!/bin/bash

Simple data science example with TuskLang

simple_datascience_config=" [basic_analysis] data_source: file: 'customer_data.csv' format: 'csv' encoding: 'utf-8'

analysis_steps: - data_cleaning: 'remove_missing_values' - exploratory_analysis: 'summary_statistics' - visualization: 'histogram_scatter_plots' - modeling: 'linear_regression'

output: report: 'analysis_report.html' charts: 'visualizations/' model: 'trained_model.pkl'

automation: schedule: 'daily_analysis' email_report: 'stakeholders@company.com' dashboard_update: 'real_time' "

Run simple data science project

tsk datascience quick-start --config <(echo "$simple_datascience_config") --execute

📖 Related Documentation

- DevOps Automation: 103-devops-automation-bash.md - Cybersecurity Integration: 102-cybersecurity-bash.md - @ Operator System: 031-sql-operator-bash.md - Error Handling: 086-error-handling-bash.md - Monitoring Integration: 083-monitoring-integration-bash.md

---

Ready to revolutionize your data science workflows with TuskLang's intelligent analytics capabilities?