๐ท โก Performance Optimization - TuskLang for C# - "Lightning Fast Configuration"
โก Performance Optimization - TuskLang for C# - "Lightning Fast Configuration"
Optimize your TuskLang configuration for production - From milliseconds to microseconds, every optimization counts!
Performance is critical in production environments. TuskLang provides powerful optimization features that can transform your configuration from a bottleneck into a performance accelerator. Learn how to make your configuration lightning fast.
๐ฏ Performance Philosophy
"We Don't Bow to Any King"
- Millisecond responses - Configuration should be instant - Intelligent caching - Cache what matters, skip what doesn't - Database optimization - Efficient queries and connection pooling - Memory efficiency - Minimal memory footprint - Scalability - Handle thousands of requests per secondWhy Performance Matters?
- User experience - Fast configuration means fast applications - Resource efficiency - Lower CPU and memory usage - Scalability - Handle more load with fewer resources - Cost optimization - Reduce infrastructure costs - Reliability - Fast systems are more reliable๐ Caching Strategies
Intelligent Caching with @cache
app.tsk - Advanced caching strategies
[performance_optimized]
Cache expensive database queries
user_count: @cache("5m", @query("SELECT COUNT(*) FROM users"))
active_users: @cache("1m", @query("SELECT COUNT(*) FROM users WHERE active = 1"))Cache external API calls
weather_data: @cache("30m", @http("GET", "https://api.weatherapi.com/v1/current.json?key=${api_key}&q=London"))
stock_price: @cache("1m", @http("GET", "https://api.stockapi.com/v1/quote?symbol=${symbol}"))Cache ML predictions
load_prediction: @cache("30s", @predict("server_load", @metrics("cpu_usage", 75)))
optimal_workers: @cache("5m", @learn("worker_count", 4))Adaptive caching based on load
adaptive_cache: @cache(@if(@metrics("cpu_usage", 0) > 80, "30s", "5m"), @query("SELECT * FROM heavy_table"))
C# Caching Implementation
using TuskLang;
using TuskLang.Caching;
using Microsoft.Extensions.Caching.Distributed;public class OptimizedConfigurationService
{
private readonly TuskLang _parser;
private readonly ICacheProvider _cacheProvider;
private readonly IDistributedCache _distributedCache;
public OptimizedConfigurationService()
{
_parser = new TuskLang();
// Multi-layer caching
_cacheProvider = new MultiLayerCacheProvider(new ICacheProvider[]
{
new MemoryCacheProvider(), // L1: In-memory cache
new RedisCacheProvider(new RedisConfig
{
Host = "localhost",
Port = 6379
}), // L2: Redis cache
new DatabaseCacheProvider() // L3: Database cache
});
_parser.SetCacheProvider(_cacheProvider);
}
public async Task<Dictionary<string, object>> GetOptimizedConfigurationAsync(string filePath)
{
// Parse with intelligent caching
var config = _parser.ParseFile(filePath);
// Monitor cache performance
var stats = await _cacheProvider.GetStatsAsync();
Console.WriteLine($"L1 Hit Rate: {stats.LayerStats[0].HitRate:P}");
Console.WriteLine($"L2 Hit Rate: {stats.LayerStats[1].HitRate:P}");
Console.WriteLine($"L3 Hit Rate: {stats.LayerStats[2].HitRate:P}");
return config;
}
public async Task PreloadCacheAsync()
{
// Preload frequently accessed data
var preloadTasks = new[]
{
PreloadUserCountAsync(),
PreloadActiveUsersAsync(),
PreloadWeatherDataAsync()
};
await Task.WhenAll(preloadTasks);
}
private async Task PreloadUserCountAsync()
{
var key = "user_count";
var value = await _cacheProvider.GetAsync(key);
if (value == null)
{
// Load from database and cache
var count = await GetUserCountFromDatabaseAsync();
await _cacheProvider.SetAsync(key, count, TimeSpan.FromMinutes(5));
}
}
private async Task<int> GetUserCountFromDatabaseAsync()
{
// Simulate database query
await Task.Delay(100);
return 1000;
}
}
Cache Invalidation Strategies
public class CacheInvalidationService
{
private readonly ICacheProvider _cacheProvider;
public CacheInvalidationService(ICacheProvider cacheProvider)
{
_cacheProvider = cacheProvider;
}
public async Task InvalidateUserCacheAsync(int userId)
{
// Invalidate user-specific cache
await _cacheProvider.InvalidateAsync($"user_{userId}_*");
await _cacheProvider.InvalidateAsync("user_count");
await _cacheProvider.InvalidateAsync("active_users");
}
public async Task InvalidateProductCacheAsync(int productId)
{
// Invalidate product-specific cache
await _cacheProvider.InvalidateAsync($"product_{productId}_*");
await _cacheProvider.InvalidateAsync("product_stats");
}
public async Task InvalidateAllCacheAsync()
{
// Invalidate all cache (use sparingly)
await _cacheProvider.InvalidateAsync("*");
}
public async Task InvalidatePatternAsync(string pattern)
{
// Invalidate cache by pattern
await _cacheProvider.InvalidateAsync(pattern);
}
}
๐๏ธ Database Optimization
Connection Pooling
using TuskLang;
using TuskLang.Adapters;public class OptimizedDatabaseService
{
private readonly TuskLang _parser;
private readonly IDatabaseAdapter _adapter;
public OptimizedDatabaseService()
{
_parser = new TuskLang();
// Optimized PostgreSQL adapter with connection pooling
_adapter = new PostgreSQLAdapter(new PostgreSQLConfig
{
Host = "localhost",
Port = 5432,
Database = "myapp",
User = "postgres",
Password = "secret",
SslMode = "require"
}, new PoolConfig
{
MaxOpenConns = 50, // Maximum open connections
MaxIdleConns = 20, // Maximum idle connections
ConnMaxLifetime = 300000, // Connection max lifetime (5 minutes)
ConnMaxIdleTime = 60000, // Connection max idle time (1 minute)
MaxRetries = 3, // Maximum retry attempts
RetryDelay = 1000 // Retry delay in milliseconds
});
_parser.SetDatabaseAdapter(_adapter);
}
public async Task<Dictionary<string, object>> GetOptimizedConfigurationAsync(string filePath)
{
// Monitor database performance
var stats = await _adapter.GetStatsAsync();
Console.WriteLine($"Active Connections: {stats.ActiveConnections}");
Console.WriteLine($"Idle Connections: {stats.IdleConnections}");
Console.WriteLine($"Total Queries: {stats.TotalQueries}");
Console.WriteLine($"Average Query Time: {stats.AverageQueryTime:F2}ms");
return _parser.ParseFile(filePath);
}
}
Query Optimization
app.tsk - Optimized database queries
[optimized_queries]
Use indexes effectively
user_by_email: @query("SELECT id, name, email FROM users WHERE email = ? LIMIT 1", $email)Use efficient aggregations
user_stats: @query("""
SELECT
COUNT(*) as total_users,
COUNT(CASE WHEN active = 1 THEN 1 END) as active_users,
COUNT(CASE WHEN created_at > ? THEN 1 END) as new_users
FROM users
""", @date.subtract("30d"))Use pagination for large datasets
recent_orders: @query("""
SELECT id, user_id, total, created_at
FROM orders
WHERE created_at > ?
ORDER BY created_at DESC
LIMIT 50
""", @date.subtract("7d"))Use efficient joins
user_orders: @query("""
SELECT u.name, COUNT(o.id) as order_count, SUM(o.total) as total_spent
FROM users u
INNER JOIN orders o ON u.id = o.user_id
WHERE u.active = 1
GROUP BY u.id, u.name
HAVING COUNT(o.id) > 0
ORDER BY total_spent DESC
LIMIT 100
""")
C# Query Optimization
public class QueryOptimizationService
{
private readonly IDatabaseAdapter _adapter;
public QueryOptimizationService(IDatabaseAdapter adapter)
{
_adapter = adapter;
}
public async Task<Dictionary<string, object>> GetOptimizedUserStatsAsync()
{
// Use prepared statements for repeated queries
var preparedQuery = await _adapter.PrepareAsync(@"
SELECT
COUNT(*) as total_users,
COUNT(CASE WHEN active = 1 THEN 1 END) as active_users,
COUNT(CASE WHEN created_at > ? THEN 1 END) as new_users
FROM users
");
var thirtyDaysAgo = DateTime.UtcNow.AddDays(-30);
var result = await preparedQuery.ExecuteAsync(new object[] { thirtyDaysAgo });
return result.FirstOrDefault() as Dictionary<string, object> ?? new Dictionary<string, object>();
}
public async Task<List<Dictionary<string, object>>> GetPaginatedUsersAsync(int page, int pageSize)
{
var offset = page * pageSize;
var query = @"
SELECT id, name, email, created_at
FROM users
ORDER BY created_at DESC
LIMIT ? OFFSET ?
";
return await _adapter.QueryAsync(query, new object[] { pageSize, offset });
}
public async Task<Dictionary<string, object>> GetUserWithOrdersAsync(int userId)
{
// Use efficient single query instead of multiple queries
var query = @"
SELECT
u.id, u.name, u.email,
COUNT(o.id) as order_count,
SUM(o.total) as total_spent,
MAX(o.created_at) as last_order
FROM users u
LEFT JOIN orders o ON u.id = o.user_id
WHERE u.id = ?
GROUP BY u.id, u.name, u.email
";
var result = await _adapter.QueryAsync(query, new object[] { userId });
return result.FirstOrDefault() as Dictionary<string, object> ?? new Dictionary<string, object>();
}
}
๐ง Machine Learning Optimization
Optimized ML Integration
app.tsk - Optimized ML configuration
[ml_optimized]
Cache ML predictions
optimal_cache_ttl: @cache("10m", @learn("cache_ttl", "5m"))
best_worker_count: @cache("5m", @learn("worker_count", 4))Batch ML predictions
load_predictions: @cache("1m", @predict.batch(["server_load", "memory_usage", "request_rate"], @metrics.batch(["cpu_usage", "memory_usage", "requests_per_second"])))Adaptive ML based on performance
ml_enabled: @if(@metrics("cpu_usage", 0) < 70, true, false)
prediction_interval: @if($ml_enabled, "30s", "5m")
C# ML Optimization
using TuskLang;
using TuskLang.MachineLearning;public class OptimizedMLService
{
private readonly TuskLang _parser;
private readonly IMLProvider _mlProvider;
private readonly ICacheProvider _cacheProvider;
public OptimizedMLService()
{
_parser = new TuskLang();
_mlProvider = new TuskMLProvider();
_cacheProvider = new RedisCacheProvider(new RedisConfig
{
Host = "localhost",
Port = 6379
});
_parser.SetMLProvider(_mlProvider);
_parser.SetCacheProvider(_cacheProvider);
}
public async Task<Dictionary<string, object>> GetOptimizedMLConfigurationAsync(string filePath)
{
// Preload ML models
await PreloadMLModelsAsync();
// Parse with optimized ML
return _parser.ParseFile(filePath);
}
private async Task PreloadMLModelsAsync()
{
var modelNames = new[] { "cache_ttl", "worker_count", "server_load", "memory_usage" };
var preloadTasks = modelNames.Select(async modelName =>
{
var model = await _mlProvider.LoadModelAsync(modelName);
if (model != null)
{
Console.WriteLine($"Loaded ML model: {modelName}");
}
});
await Task.WhenAll(preloadTasks);
}
public async Task BatchPredictAsync(Dictionary<string, object> features)
{
// Batch predictions for better performance
var predictions = await _mlProvider.BatchPredictAsync(new Dictionary<string, object[]>
{
["server_load"] = new object[] { features["cpu_usage"], features["memory_usage"] },
["memory_usage"] = new object[] { features["memory_usage"], features["disk_usage"] },
["request_rate"] = new object[] { features["requests_per_second"], features["response_time"] }
});
// Cache batch predictions
foreach (var prediction in predictions)
{
await _cacheProvider.SetAsync($"prediction_{prediction.Key}", prediction.Value, TimeSpan.FromMinutes(5));
}
}
}
๐ HTTP and API Optimization
Optimized HTTP Integration
app.tsk - Optimized HTTP configuration
[http_optimized]
Cache external API calls
weather_data: @cache("30m", @http("GET", "https://api.weatherapi.com/v1/current.json?key=${weather_api_key}&q=London"))
stock_price: @cache("1m", @http("GET", "https://api.stockapi.com/v1/quote?symbol=${stock_symbol}"))Use connection pooling for HTTP
api_config: @http("GET", "https://api.example.com/config", {
"timeout": "5s",
"connection_pool": true,
"max_connections": 100
})Batch HTTP requests
batch_data: @http.batch([
"GET https://api.example.com/users",
"GET https://api.example.com/products",
"GET https://api.example.com/orders"
], {
"timeout": "10s",
"parallel": true
})
C# HTTP Optimization
using TuskLang;
using TuskLang.Http;public class OptimizedHttpService
{
private readonly TuskLang _parser;
private readonly IHttpProvider _httpProvider;
private readonly ICacheProvider _cacheProvider;
public OptimizedHttpService()
{
_parser = new TuskLang();
// Optimized HTTP provider with connection pooling
_httpProvider = new TuskHttpProvider(new HttpClient(), new HttpConfig
{
Timeout = TimeSpan.FromSeconds(10),
MaxConnections = 100,
ConnectionLifetime = TimeSpan.FromMinutes(5),
RetryAttempts = 3,
RetryDelay = TimeSpan.FromSeconds(1)
});
_cacheProvider = new RedisCacheProvider(new RedisConfig
{
Host = "localhost",
Port = 6379
});
_parser.SetHttpProvider(_httpProvider);
_parser.SetCacheProvider(_cacheProvider);
}
public async Task<Dictionary<string, object>> GetOptimizedHttpConfigurationAsync(string filePath)
{
// Preload frequently accessed APIs
await PreloadAPIDataAsync();
return _parser.ParseFile(filePath);
}
private async Task PreloadAPIDataAsync()
{
var apiEndpoints = new[]
{
"https://api.weatherapi.com/v1/current.json?key=${weather_api_key}&q=London",
"https://api.stockapi.com/v1/quote?symbol=${stock_symbol}",
"https://api.example.com/config"
};
var preloadTasks = apiEndpoints.Select(async endpoint =>
{
var cacheKey = $"api_{endpoint.GetHashCode()}";
var cached = await _cacheProvider.GetAsync(cacheKey);
if (cached == null)
{
try
{
var response = await _httpProvider.GetAsync(endpoint);
await _cacheProvider.SetAsync(cacheKey, response, TimeSpan.FromMinutes(30));
}
catch (Exception ex)
{
Console.WriteLine($"Failed to preload API: {endpoint}, Error: {ex.Message}");
}
}
});
await Task.WhenAll(preloadTasks);
}
public async Task<Dictionary<string, object>> BatchHttpRequestsAsync(string[] urls)
{
// Execute HTTP requests in parallel
var tasks = urls.Select(url => _httpProvider.GetAsync(url));
var responses = await Task.WhenAll(tasks);
var result = new Dictionary<string, object>();
for (int i = 0; i < urls.Length; i++)
{
result[urls[i]] = responses[i];
}
return result;
}
}
๐ Metrics and Monitoring Optimization
Optimized Metrics Collection
app.tsk - Optimized metrics configuration
[metrics_optimized]
Cache metrics to reduce collection overhead
cached_cpu: @cache("10s", @metrics("cpu_usage", 0))
cached_memory: @cache("10s", @metrics("memory_usage", 0))
cached_disk: @cache("30s", @metrics("disk_usage", 0))Batch metrics collection
system_metrics: @metrics.batch(["cpu_usage", "memory_usage", "disk_usage", "network_io"], 0)Adaptive metrics collection
metrics_interval: @if(@metrics("cpu_usage", 0) > 80, "5s", "30s")
C# Metrics Optimization
using TuskLang;
using TuskLang.Metrics;public class OptimizedMetricsService
{
private readonly TuskLang _parser;
private readonly IMetricsCollector _metricsCollector;
private readonly ICacheProvider _cacheProvider;
private readonly Timer _metricsTimer;
public OptimizedMetricsService()
{
_parser = new TuskLang();
_metricsCollector = new PrometheusMetricsCollector();
_cacheProvider = new RedisCacheProvider(new RedisConfig
{
Host = "localhost",
Port = 6379
});
_parser.SetMetricsCollector(_metricsCollector);
_parser.SetCacheProvider(_cacheProvider);
// Adaptive metrics collection
_metricsTimer = new Timer(CollectMetricsAsync, null, TimeSpan.Zero, TimeSpan.FromSeconds(30));
}
private async void CollectMetricsAsync(object state)
{
try
{
var metrics = await _metricsCollector.CollectAsync();
// Cache metrics to reduce collection overhead
foreach (var metric in metrics)
{
var cacheKey = $"metric_{metric.Key}";
await _cacheProvider.SetAsync(cacheKey, metric.Value, TimeSpan.FromSeconds(10));
}
_parser.SetMetricsContext(metrics);
// Adjust collection interval based on load
var cpuUsage = Convert.ToDouble(metrics["cpu_usage"]);
var interval = cpuUsage > 80 ? TimeSpan.FromSeconds(5) : TimeSpan.FromSeconds(30);
_metricsTimer.Change(interval, interval);
}
catch (Exception ex)
{
Console.WriteLine($"Metrics collection failed: {ex.Message}");
}
}
public async Task<Dictionary<string, object>> GetOptimizedMetricsConfigurationAsync(string filePath)
{
return _parser.ParseFile(filePath);
}
public async Task<Dictionary<string, object>> BatchCollectMetricsAsync(string[] metricNames)
{
// Collect multiple metrics in a single operation
var metrics = await _metricsCollector.BatchCollectAsync(metricNames);
// Cache batch metrics
foreach (var metric in metrics)
{
var cacheKey = $"metric_{metric.Key}";
await _cacheProvider.SetAsync(cacheKey, metric.Value, TimeSpan.FromSeconds(10));
}
return metrics;
}
}
๐ง Memory Optimization
Memory-Efficient Configuration
using TuskLang;
using System.Collections.Concurrent;public class MemoryOptimizedConfigurationService
{
private readonly TuskLang _parser;
private readonly ConcurrentDictionary<string, WeakReference<Dictionary<string, object>>> _configCache;
private readonly Timer _cleanupTimer;
public MemoryOptimizedConfigurationService()
{
_parser = new TuskLang();
_configCache = new ConcurrentDictionary<string, WeakReference<Dictionary<string, object>>>();
// Cleanup unused configurations every 5 minutes
_cleanupTimer = new Timer(CleanupUnusedConfigs, null, TimeSpan.FromMinutes(5), TimeSpan.FromMinutes(5));
}
public Dictionary<string, object> GetMemoryOptimizedConfiguration(string filePath)
{
// Check if configuration is already in memory
if (_configCache.TryGetValue(filePath, out var weakRef) && weakRef.TryGetTarget(out var cachedConfig))
{
return cachedConfig;
}
// Parse configuration
var config = _parser.ParseFile(filePath);
// Store with weak reference to allow garbage collection
_configCache[filePath] = new WeakReference<Dictionary<string, object>>(config);
return config;
}
private void CleanupUnusedConfigs(object state)
{
var keysToRemove = new List<string>();
foreach (var kvp in _configCache)
{
if (!kvp.Value.TryGetTarget(out _))
{
keysToRemove.Add(kvp.Key);
}
}
foreach (var key in keysToRemove)
{
_configCache.TryRemove(key, out _);
}
Console.WriteLine($"Cleaned up {keysToRemove.Count} unused configurations");
}
public void Dispose()
{
_cleanupTimer?.Dispose();
}
}
๐งช Performance Testing
Comprehensive Performance Tests
using Xunit;
using TuskLang;
using System.Diagnostics;public class PerformanceTests
{
[Fact]
public async Task TestConfigurationParsePerformance()
{
// Arrange
var parser = new TuskLang();
var stopwatch = new Stopwatch();
// Act
stopwatch.Start();
var config = parser.ParseFile("app.tsk");
stopwatch.Stop();
// Assert
Assert.True(stopwatch.ElapsedMilliseconds < 100, $"Configuration parsing took {stopwatch.ElapsedMilliseconds}ms, expected < 100ms");
}
[Fact]
public async Task TestCachedConfigurationPerformance()
{
// Arrange
var service = new OptimizedConfigurationService();
var stopwatch = new Stopwatch();
// Act - First call (cache miss)
stopwatch.Start();
var config1 = await service.GetOptimizedConfigurationAsync("app.tsk");
stopwatch.Stop();
var firstCallTime = stopwatch.ElapsedMilliseconds;
// Second call (cache hit)
stopwatch.Restart();
var config2 = await service.GetOptimizedConfigurationAsync("app.tsk");
stopwatch.Stop();
var secondCallTime = stopwatch.ElapsedMilliseconds;
// Assert
Assert.True(secondCallTime < firstCallTime * 0.1, $"Cache hit should be 10x faster. First: {firstCallTime}ms, Second: {secondCallTime}ms");
}
[Fact]
public async Task TestDatabaseQueryPerformance()
{
// Arrange
var service = new OptimizedDatabaseService();
var stopwatch = new Stopwatch();
// Act
stopwatch.Start();
var config = await service.GetOptimizedConfigurationAsync("app.tsk");
stopwatch.Stop();
// Assert
Assert.True(stopwatch.ElapsedMilliseconds < 500, $"Database configuration took {stopwatch.ElapsedMilliseconds}ms, expected < 500ms");
}
[Fact]
public async Task TestConcurrentConfigurationAccess()
{
// Arrange
var service = new OptimizedConfigurationService();
var tasks = new List<Task<Dictionary<string, object>>>();
var stopwatch = new Stopwatch();
// Act
stopwatch.Start();
for (int i = 0; i < 100; i++)
{
tasks.Add(service.GetOptimizedConfigurationAsync("app.tsk"));
}
var results = await Task.WhenAll(tasks);
stopwatch.Stop();
// Assert
Assert.Equal(100, results.Length);
Assert.True(stopwatch.ElapsedMilliseconds < 1000, $"Concurrent access took {stopwatch.ElapsedMilliseconds}ms, expected < 1000ms");
}
}
๐ Performance Monitoring
Real-Time Performance Monitoring
public class PerformanceMonitor
{
private readonly Dictionary<string, List<long>> _responseTimes;
private readonly object _lock = new object();
public PerformanceMonitor()
{
_responseTimes = new Dictionary<string, List<long>>();
}
public void RecordResponseTime(string operation, long milliseconds)
{
lock (_lock)
{
if (!_responseTimes.ContainsKey(operation))
{
_responseTimes[operation] = new List<long>();
}
_responseTimes[operation].Add(milliseconds);
// Keep only last 1000 measurements
if (_responseTimes[operation].Count > 1000)
{
_responseTimes[operation].RemoveAt(0);
}
}
}
public PerformanceStats GetStats(string operation)
{
lock (_lock)
{
if (!_responseTimes.ContainsKey(operation))
{
return new PerformanceStats();
}
var times = _responseTimes[operation];
if (times.Count == 0)
{
return new PerformanceStats();
}
return new PerformanceStats
{
Count = times.Count,
Average = times.Average(),
Min = times.Min(),
Max = times.Max(),
P95 = CalculatePercentile(times, 95),
P99 = CalculatePercentile(times, 99)
};
}
}
private double CalculatePercentile(List<long> values, int percentile)
{
var sorted = values.OrderBy(x => x).ToList();
var index = (int)Math.Ceiling(percentile / 100.0 * sorted.Count) - 1;
return sorted[index];
}
}public class PerformanceStats
{
public int Count { get; set; }
public double Average { get; set; }
public long Min { get; set; }
public long Max { get; set; }
public double P95 { get; set; }
public double P99 { get; set; }
}
๐ฏ Best Practices
1. Cache Strategically
Good: Cache expensive operations
[optimized]
expensive_query: @cache("5m", @query("SELECT COUNT(*) FROM large_table"))
api_response: @cache("30s", @http("GET", "https://api.example.com/data"))
ml_prediction: @cache("1m", @predict("server_load", @metrics("cpu_usage", 75)))Good: Use adaptive caching
adaptive_cache: @cache(@if(@metrics("cpu_usage", 0) > 80, "30s", "5m"), @query("SELECT * FROM heavy_table"))
2. Optimize Database Queries
Good: Use efficient queries
[optimized_queries]
user_count: @query("SELECT COUNT(*) FROM users WHERE active = 1")
user_stats: @query("""
SELECT
COUNT(*) as total_users,
COUNT(CASE WHEN active = 1 THEN 1 END) as active_users
FROM users
""")
3. Monitor Performance
// Good: Monitor performance metrics
public async Task<Dictionary<string, object>> GetMonitoredConfigurationAsync(string filePath)
{
var stopwatch = Stopwatch.StartNew();
try
{
var config = await GetOptimizedConfigurationAsync(filePath);
stopwatch.Stop();
_performanceMonitor.RecordResponseTime("configuration_parse", stopwatch.ElapsedMilliseconds);
return config;
}
catch (Exception ex)
{
stopwatch.Stop();
_performanceMonitor.RecordResponseTime("configuration_error", stopwatch.ElapsedMilliseconds);
throw;
}
}
4. Use Connection Pooling
// Good: Use connection pooling
var adapter = new PostgreSQLAdapter(new PostgreSQLConfig
{
Host = "localhost",
Database = "myapp"
}, new PoolConfig
{
MaxOpenConns = 50,
MaxIdleConns = 20,
ConnMaxLifetime = 300000
});
๐ You're Ready!
You've mastered performance optimization with TuskLang! You can now:
- โ Implement intelligent caching - Multi-layer caching strategies - โ Optimize database queries - Connection pooling and efficient queries - โ Optimize ML integration - Batch predictions and model caching - โ Optimize HTTP requests - Connection pooling and request batching - โ Optimize metrics collection - Adaptive collection and caching - โ Optimize memory usage - Weak references and cleanup strategies - โ Monitor performance - Real-time performance tracking - โ Test performance - Comprehensive performance testing
๐ฅ What's Next?
Ready to deploy to production? Explore:
1. Production Deployment - Deploy to production environments 2. Best Practices - Production best practices and patterns 3. Troubleshooting - Common issues and solutions
---
"We don't bow to any king" - Your performance, your optimization, your speed.
Make your configuration lightning fast! โก