๐Ÿ”ท โšก Performance Optimization - TuskLang for C# - "Lightning Fast Configuration"

C# Documentation

โšก Performance Optimization - TuskLang for C# - "Lightning Fast Configuration"

Optimize your TuskLang configuration for production - From milliseconds to microseconds, every optimization counts!

Performance is critical in production environments. TuskLang provides powerful optimization features that can transform your configuration from a bottleneck into a performance accelerator. Learn how to make your configuration lightning fast.

๐ŸŽฏ Performance Philosophy

"We Don't Bow to Any King"

- Millisecond responses - Configuration should be instant - Intelligent caching - Cache what matters, skip what doesn't - Database optimization - Efficient queries and connection pooling - Memory efficiency - Minimal memory footprint - Scalability - Handle thousands of requests per second

Why Performance Matters?

- User experience - Fast configuration means fast applications - Resource efficiency - Lower CPU and memory usage - Scalability - Handle more load with fewer resources - Cost optimization - Reduce infrastructure costs - Reliability - Fast systems are more reliable

๐Ÿš€ Caching Strategies

Intelligent Caching with @cache

app.tsk - Advanced caching strategies

[performance_optimized]

Cache expensive database queries

user_count: @cache("5m", @query("SELECT COUNT(*) FROM users")) active_users: @cache("1m", @query("SELECT COUNT(*) FROM users WHERE active = 1"))

Cache external API calls

weather_data: @cache("30m", @http("GET", "https://api.weatherapi.com/v1/current.json?key=${api_key}&q=London")) stock_price: @cache("1m", @http("GET", "https://api.stockapi.com/v1/quote?symbol=${symbol}"))

Cache ML predictions

load_prediction: @cache("30s", @predict("server_load", @metrics("cpu_usage", 75))) optimal_workers: @cache("5m", @learn("worker_count", 4))

Adaptive caching based on load

adaptive_cache: @cache(@if(@metrics("cpu_usage", 0) > 80, "30s", "5m"), @query("SELECT * FROM heavy_table"))

C# Caching Implementation

using TuskLang;
using TuskLang.Caching;
using Microsoft.Extensions.Caching.Distributed;

public class OptimizedConfigurationService { private readonly TuskLang _parser; private readonly ICacheProvider _cacheProvider; private readonly IDistributedCache _distributedCache; public OptimizedConfigurationService() { _parser = new TuskLang(); // Multi-layer caching _cacheProvider = new MultiLayerCacheProvider(new ICacheProvider[] { new MemoryCacheProvider(), // L1: In-memory cache new RedisCacheProvider(new RedisConfig { Host = "localhost", Port = 6379 }), // L2: Redis cache new DatabaseCacheProvider() // L3: Database cache }); _parser.SetCacheProvider(_cacheProvider); } public async Task<Dictionary<string, object>> GetOptimizedConfigurationAsync(string filePath) { // Parse with intelligent caching var config = _parser.ParseFile(filePath); // Monitor cache performance var stats = await _cacheProvider.GetStatsAsync(); Console.WriteLine($"L1 Hit Rate: {stats.LayerStats[0].HitRate:P}"); Console.WriteLine($"L2 Hit Rate: {stats.LayerStats[1].HitRate:P}"); Console.WriteLine($"L3 Hit Rate: {stats.LayerStats[2].HitRate:P}"); return config; } public async Task PreloadCacheAsync() { // Preload frequently accessed data var preloadTasks = new[] { PreloadUserCountAsync(), PreloadActiveUsersAsync(), PreloadWeatherDataAsync() }; await Task.WhenAll(preloadTasks); } private async Task PreloadUserCountAsync() { var key = "user_count"; var value = await _cacheProvider.GetAsync(key); if (value == null) { // Load from database and cache var count = await GetUserCountFromDatabaseAsync(); await _cacheProvider.SetAsync(key, count, TimeSpan.FromMinutes(5)); } } private async Task<int> GetUserCountFromDatabaseAsync() { // Simulate database query await Task.Delay(100); return 1000; } }

Cache Invalidation Strategies

public class CacheInvalidationService
{
    private readonly ICacheProvider _cacheProvider;
    
    public CacheInvalidationService(ICacheProvider cacheProvider)
    {
        _cacheProvider = cacheProvider;
    }
    
    public async Task InvalidateUserCacheAsync(int userId)
    {
        // Invalidate user-specific cache
        await _cacheProvider.InvalidateAsync($"user_{userId}_*");
        await _cacheProvider.InvalidateAsync("user_count");
        await _cacheProvider.InvalidateAsync("active_users");
    }
    
    public async Task InvalidateProductCacheAsync(int productId)
    {
        // Invalidate product-specific cache
        await _cacheProvider.InvalidateAsync($"product_{productId}_*");
        await _cacheProvider.InvalidateAsync("product_stats");
    }
    
    public async Task InvalidateAllCacheAsync()
    {
        // Invalidate all cache (use sparingly)
        await _cacheProvider.InvalidateAsync("*");
    }
    
    public async Task InvalidatePatternAsync(string pattern)
    {
        // Invalidate cache by pattern
        await _cacheProvider.InvalidateAsync(pattern);
    }
}

๐Ÿ—„๏ธ Database Optimization

Connection Pooling

using TuskLang;
using TuskLang.Adapters;

public class OptimizedDatabaseService { private readonly TuskLang _parser; private readonly IDatabaseAdapter _adapter; public OptimizedDatabaseService() { _parser = new TuskLang(); // Optimized PostgreSQL adapter with connection pooling _adapter = new PostgreSQLAdapter(new PostgreSQLConfig { Host = "localhost", Port = 5432, Database = "myapp", User = "postgres", Password = "secret", SslMode = "require" }, new PoolConfig { MaxOpenConns = 50, // Maximum open connections MaxIdleConns = 20, // Maximum idle connections ConnMaxLifetime = 300000, // Connection max lifetime (5 minutes) ConnMaxIdleTime = 60000, // Connection max idle time (1 minute) MaxRetries = 3, // Maximum retry attempts RetryDelay = 1000 // Retry delay in milliseconds }); _parser.SetDatabaseAdapter(_adapter); } public async Task<Dictionary<string, object>> GetOptimizedConfigurationAsync(string filePath) { // Monitor database performance var stats = await _adapter.GetStatsAsync(); Console.WriteLine($"Active Connections: {stats.ActiveConnections}"); Console.WriteLine($"Idle Connections: {stats.IdleConnections}"); Console.WriteLine($"Total Queries: {stats.TotalQueries}"); Console.WriteLine($"Average Query Time: {stats.AverageQueryTime:F2}ms"); return _parser.ParseFile(filePath); } }

Query Optimization

app.tsk - Optimized database queries

[optimized_queries]

Use indexes effectively

user_by_email: @query("SELECT id, name, email FROM users WHERE email = ? LIMIT 1", $email)

Use efficient aggregations

user_stats: @query(""" SELECT COUNT(*) as total_users, COUNT(CASE WHEN active = 1 THEN 1 END) as active_users, COUNT(CASE WHEN created_at > ? THEN 1 END) as new_users FROM users """, @date.subtract("30d"))

Use pagination for large datasets

recent_orders: @query(""" SELECT id, user_id, total, created_at FROM orders WHERE created_at > ? ORDER BY created_at DESC LIMIT 50 """, @date.subtract("7d"))

Use efficient joins

user_orders: @query(""" SELECT u.name, COUNT(o.id) as order_count, SUM(o.total) as total_spent FROM users u INNER JOIN orders o ON u.id = o.user_id WHERE u.active = 1 GROUP BY u.id, u.name HAVING COUNT(o.id) > 0 ORDER BY total_spent DESC LIMIT 100 """)

C# Query Optimization

public class QueryOptimizationService
{
    private readonly IDatabaseAdapter _adapter;
    
    public QueryOptimizationService(IDatabaseAdapter adapter)
    {
        _adapter = adapter;
    }
    
    public async Task<Dictionary<string, object>> GetOptimizedUserStatsAsync()
    {
        // Use prepared statements for repeated queries
        var preparedQuery = await _adapter.PrepareAsync(@"
            SELECT 
                COUNT(*) as total_users,
                COUNT(CASE WHEN active = 1 THEN 1 END) as active_users,
                COUNT(CASE WHEN created_at > ? THEN 1 END) as new_users
            FROM users
        ");
        
        var thirtyDaysAgo = DateTime.UtcNow.AddDays(-30);
        var result = await preparedQuery.ExecuteAsync(new object[] { thirtyDaysAgo });
        
        return result.FirstOrDefault() as Dictionary<string, object> ?? new Dictionary<string, object>();
    }
    
    public async Task<List<Dictionary<string, object>>> GetPaginatedUsersAsync(int page, int pageSize)
    {
        var offset = page * pageSize;
        var query = @"
            SELECT id, name, email, created_at
            FROM users
            ORDER BY created_at DESC
            LIMIT ? OFFSET ?
        ";
        
        return await _adapter.QueryAsync(query, new object[] { pageSize, offset });
    }
    
    public async Task<Dictionary<string, object>> GetUserWithOrdersAsync(int userId)
    {
        // Use efficient single query instead of multiple queries
        var query = @"
            SELECT 
                u.id, u.name, u.email,
                COUNT(o.id) as order_count,
                SUM(o.total) as total_spent,
                MAX(o.created_at) as last_order
            FROM users u
            LEFT JOIN orders o ON u.id = o.user_id
            WHERE u.id = ?
            GROUP BY u.id, u.name, u.email
        ";
        
        var result = await _adapter.QueryAsync(query, new object[] { userId });
        return result.FirstOrDefault() as Dictionary<string, object> ?? new Dictionary<string, object>();
    }
}

๐Ÿง  Machine Learning Optimization

Optimized ML Integration

app.tsk - Optimized ML configuration

[ml_optimized]

Cache ML predictions

optimal_cache_ttl: @cache("10m", @learn("cache_ttl", "5m")) best_worker_count: @cache("5m", @learn("worker_count", 4))

Batch ML predictions

load_predictions: @cache("1m", @predict.batch(["server_load", "memory_usage", "request_rate"], @metrics.batch(["cpu_usage", "memory_usage", "requests_per_second"])))

Adaptive ML based on performance

ml_enabled: @if(@metrics("cpu_usage", 0) < 70, true, false) prediction_interval: @if($ml_enabled, "30s", "5m")

C# ML Optimization

using TuskLang;
using TuskLang.MachineLearning;

public class OptimizedMLService { private readonly TuskLang _parser; private readonly IMLProvider _mlProvider; private readonly ICacheProvider _cacheProvider; public OptimizedMLService() { _parser = new TuskLang(); _mlProvider = new TuskMLProvider(); _cacheProvider = new RedisCacheProvider(new RedisConfig { Host = "localhost", Port = 6379 }); _parser.SetMLProvider(_mlProvider); _parser.SetCacheProvider(_cacheProvider); } public async Task<Dictionary<string, object>> GetOptimizedMLConfigurationAsync(string filePath) { // Preload ML models await PreloadMLModelsAsync(); // Parse with optimized ML return _parser.ParseFile(filePath); } private async Task PreloadMLModelsAsync() { var modelNames = new[] { "cache_ttl", "worker_count", "server_load", "memory_usage" }; var preloadTasks = modelNames.Select(async modelName => { var model = await _mlProvider.LoadModelAsync(modelName); if (model != null) { Console.WriteLine($"Loaded ML model: {modelName}"); } }); await Task.WhenAll(preloadTasks); } public async Task BatchPredictAsync(Dictionary<string, object> features) { // Batch predictions for better performance var predictions = await _mlProvider.BatchPredictAsync(new Dictionary<string, object[]> { ["server_load"] = new object[] { features["cpu_usage"], features["memory_usage"] }, ["memory_usage"] = new object[] { features["memory_usage"], features["disk_usage"] }, ["request_rate"] = new object[] { features["requests_per_second"], features["response_time"] } }); // Cache batch predictions foreach (var prediction in predictions) { await _cacheProvider.SetAsync($"prediction_{prediction.Key}", prediction.Value, TimeSpan.FromMinutes(5)); } } }

๐ŸŒ HTTP and API Optimization

Optimized HTTP Integration

app.tsk - Optimized HTTP configuration

[http_optimized]

Cache external API calls

weather_data: @cache("30m", @http("GET", "https://api.weatherapi.com/v1/current.json?key=${weather_api_key}&q=London")) stock_price: @cache("1m", @http("GET", "https://api.stockapi.com/v1/quote?symbol=${stock_symbol}"))

Use connection pooling for HTTP

api_config: @http("GET", "https://api.example.com/config", { "timeout": "5s", "connection_pool": true, "max_connections": 100 })

Batch HTTP requests

batch_data: @http.batch([ "GET https://api.example.com/users", "GET https://api.example.com/products", "GET https://api.example.com/orders" ], { "timeout": "10s", "parallel": true })

C# HTTP Optimization

using TuskLang;
using TuskLang.Http;

public class OptimizedHttpService { private readonly TuskLang _parser; private readonly IHttpProvider _httpProvider; private readonly ICacheProvider _cacheProvider; public OptimizedHttpService() { _parser = new TuskLang(); // Optimized HTTP provider with connection pooling _httpProvider = new TuskHttpProvider(new HttpClient(), new HttpConfig { Timeout = TimeSpan.FromSeconds(10), MaxConnections = 100, ConnectionLifetime = TimeSpan.FromMinutes(5), RetryAttempts = 3, RetryDelay = TimeSpan.FromSeconds(1) }); _cacheProvider = new RedisCacheProvider(new RedisConfig { Host = "localhost", Port = 6379 }); _parser.SetHttpProvider(_httpProvider); _parser.SetCacheProvider(_cacheProvider); } public async Task<Dictionary<string, object>> GetOptimizedHttpConfigurationAsync(string filePath) { // Preload frequently accessed APIs await PreloadAPIDataAsync(); return _parser.ParseFile(filePath); } private async Task PreloadAPIDataAsync() { var apiEndpoints = new[] { "https://api.weatherapi.com/v1/current.json?key=${weather_api_key}&q=London", "https://api.stockapi.com/v1/quote?symbol=${stock_symbol}", "https://api.example.com/config" }; var preloadTasks = apiEndpoints.Select(async endpoint => { var cacheKey = $"api_{endpoint.GetHashCode()}"; var cached = await _cacheProvider.GetAsync(cacheKey); if (cached == null) { try { var response = await _httpProvider.GetAsync(endpoint); await _cacheProvider.SetAsync(cacheKey, response, TimeSpan.FromMinutes(30)); } catch (Exception ex) { Console.WriteLine($"Failed to preload API: {endpoint}, Error: {ex.Message}"); } } }); await Task.WhenAll(preloadTasks); } public async Task<Dictionary<string, object>> BatchHttpRequestsAsync(string[] urls) { // Execute HTTP requests in parallel var tasks = urls.Select(url => _httpProvider.GetAsync(url)); var responses = await Task.WhenAll(tasks); var result = new Dictionary<string, object>(); for (int i = 0; i < urls.Length; i++) { result[urls[i]] = responses[i]; } return result; } }

๐Ÿ“Š Metrics and Monitoring Optimization

Optimized Metrics Collection

app.tsk - Optimized metrics configuration

[metrics_optimized]

Cache metrics to reduce collection overhead

cached_cpu: @cache("10s", @metrics("cpu_usage", 0)) cached_memory: @cache("10s", @metrics("memory_usage", 0)) cached_disk: @cache("30s", @metrics("disk_usage", 0))

Batch metrics collection

system_metrics: @metrics.batch(["cpu_usage", "memory_usage", "disk_usage", "network_io"], 0)

Adaptive metrics collection

metrics_interval: @if(@metrics("cpu_usage", 0) > 80, "5s", "30s")

C# Metrics Optimization

using TuskLang;
using TuskLang.Metrics;

public class OptimizedMetricsService { private readonly TuskLang _parser; private readonly IMetricsCollector _metricsCollector; private readonly ICacheProvider _cacheProvider; private readonly Timer _metricsTimer; public OptimizedMetricsService() { _parser = new TuskLang(); _metricsCollector = new PrometheusMetricsCollector(); _cacheProvider = new RedisCacheProvider(new RedisConfig { Host = "localhost", Port = 6379 }); _parser.SetMetricsCollector(_metricsCollector); _parser.SetCacheProvider(_cacheProvider); // Adaptive metrics collection _metricsTimer = new Timer(CollectMetricsAsync, null, TimeSpan.Zero, TimeSpan.FromSeconds(30)); } private async void CollectMetricsAsync(object state) { try { var metrics = await _metricsCollector.CollectAsync(); // Cache metrics to reduce collection overhead foreach (var metric in metrics) { var cacheKey = $"metric_{metric.Key}"; await _cacheProvider.SetAsync(cacheKey, metric.Value, TimeSpan.FromSeconds(10)); } _parser.SetMetricsContext(metrics); // Adjust collection interval based on load var cpuUsage = Convert.ToDouble(metrics["cpu_usage"]); var interval = cpuUsage > 80 ? TimeSpan.FromSeconds(5) : TimeSpan.FromSeconds(30); _metricsTimer.Change(interval, interval); } catch (Exception ex) { Console.WriteLine($"Metrics collection failed: {ex.Message}"); } } public async Task<Dictionary<string, object>> GetOptimizedMetricsConfigurationAsync(string filePath) { return _parser.ParseFile(filePath); } public async Task<Dictionary<string, object>> BatchCollectMetricsAsync(string[] metricNames) { // Collect multiple metrics in a single operation var metrics = await _metricsCollector.BatchCollectAsync(metricNames); // Cache batch metrics foreach (var metric in metrics) { var cacheKey = $"metric_{metric.Key}"; await _cacheProvider.SetAsync(cacheKey, metric.Value, TimeSpan.FromSeconds(10)); } return metrics; } }

๐Ÿ”ง Memory Optimization

Memory-Efficient Configuration

using TuskLang;
using System.Collections.Concurrent;

public class MemoryOptimizedConfigurationService { private readonly TuskLang _parser; private readonly ConcurrentDictionary<string, WeakReference<Dictionary<string, object>>> _configCache; private readonly Timer _cleanupTimer; public MemoryOptimizedConfigurationService() { _parser = new TuskLang(); _configCache = new ConcurrentDictionary<string, WeakReference<Dictionary<string, object>>>(); // Cleanup unused configurations every 5 minutes _cleanupTimer = new Timer(CleanupUnusedConfigs, null, TimeSpan.FromMinutes(5), TimeSpan.FromMinutes(5)); } public Dictionary<string, object> GetMemoryOptimizedConfiguration(string filePath) { // Check if configuration is already in memory if (_configCache.TryGetValue(filePath, out var weakRef) && weakRef.TryGetTarget(out var cachedConfig)) { return cachedConfig; } // Parse configuration var config = _parser.ParseFile(filePath); // Store with weak reference to allow garbage collection _configCache[filePath] = new WeakReference<Dictionary<string, object>>(config); return config; } private void CleanupUnusedConfigs(object state) { var keysToRemove = new List<string>(); foreach (var kvp in _configCache) { if (!kvp.Value.TryGetTarget(out _)) { keysToRemove.Add(kvp.Key); } } foreach (var key in keysToRemove) { _configCache.TryRemove(key, out _); } Console.WriteLine($"Cleaned up {keysToRemove.Count} unused configurations"); } public void Dispose() { _cleanupTimer?.Dispose(); } }

๐Ÿงช Performance Testing

Comprehensive Performance Tests

using Xunit;
using TuskLang;
using System.Diagnostics;

public class PerformanceTests { [Fact] public async Task TestConfigurationParsePerformance() { // Arrange var parser = new TuskLang(); var stopwatch = new Stopwatch(); // Act stopwatch.Start(); var config = parser.ParseFile("app.tsk"); stopwatch.Stop(); // Assert Assert.True(stopwatch.ElapsedMilliseconds < 100, $"Configuration parsing took {stopwatch.ElapsedMilliseconds}ms, expected < 100ms"); } [Fact] public async Task TestCachedConfigurationPerformance() { // Arrange var service = new OptimizedConfigurationService(); var stopwatch = new Stopwatch(); // Act - First call (cache miss) stopwatch.Start(); var config1 = await service.GetOptimizedConfigurationAsync("app.tsk"); stopwatch.Stop(); var firstCallTime = stopwatch.ElapsedMilliseconds; // Second call (cache hit) stopwatch.Restart(); var config2 = await service.GetOptimizedConfigurationAsync("app.tsk"); stopwatch.Stop(); var secondCallTime = stopwatch.ElapsedMilliseconds; // Assert Assert.True(secondCallTime < firstCallTime * 0.1, $"Cache hit should be 10x faster. First: {firstCallTime}ms, Second: {secondCallTime}ms"); } [Fact] public async Task TestDatabaseQueryPerformance() { // Arrange var service = new OptimizedDatabaseService(); var stopwatch = new Stopwatch(); // Act stopwatch.Start(); var config = await service.GetOptimizedConfigurationAsync("app.tsk"); stopwatch.Stop(); // Assert Assert.True(stopwatch.ElapsedMilliseconds < 500, $"Database configuration took {stopwatch.ElapsedMilliseconds}ms, expected < 500ms"); } [Fact] public async Task TestConcurrentConfigurationAccess() { // Arrange var service = new OptimizedConfigurationService(); var tasks = new List<Task<Dictionary<string, object>>>(); var stopwatch = new Stopwatch(); // Act stopwatch.Start(); for (int i = 0; i < 100; i++) { tasks.Add(service.GetOptimizedConfigurationAsync("app.tsk")); } var results = await Task.WhenAll(tasks); stopwatch.Stop(); // Assert Assert.Equal(100, results.Length); Assert.True(stopwatch.ElapsedMilliseconds < 1000, $"Concurrent access took {stopwatch.ElapsedMilliseconds}ms, expected < 1000ms"); } }

๐Ÿ“ˆ Performance Monitoring

Real-Time Performance Monitoring

public class PerformanceMonitor
{
    private readonly Dictionary<string, List<long>> _responseTimes;
    private readonly object _lock = new object();
    
    public PerformanceMonitor()
    {
        _responseTimes = new Dictionary<string, List<long>>();
    }
    
    public void RecordResponseTime(string operation, long milliseconds)
    {
        lock (_lock)
        {
            if (!_responseTimes.ContainsKey(operation))
            {
                _responseTimes[operation] = new List<long>();
            }
            
            _responseTimes[operation].Add(milliseconds);
            
            // Keep only last 1000 measurements
            if (_responseTimes[operation].Count > 1000)
            {
                _responseTimes[operation].RemoveAt(0);
            }
        }
    }
    
    public PerformanceStats GetStats(string operation)
    {
        lock (_lock)
        {
            if (!_responseTimes.ContainsKey(operation))
            {
                return new PerformanceStats();
            }
            
            var times = _responseTimes[operation];
            if (times.Count == 0)
            {
                return new PerformanceStats();
            }
            
            return new PerformanceStats
            {
                Count = times.Count,
                Average = times.Average(),
                Min = times.Min(),
                Max = times.Max(),
                P95 = CalculatePercentile(times, 95),
                P99 = CalculatePercentile(times, 99)
            };
        }
    }
    
    private double CalculatePercentile(List<long> values, int percentile)
    {
        var sorted = values.OrderBy(x => x).ToList();
        var index = (int)Math.Ceiling(percentile / 100.0 * sorted.Count) - 1;
        return sorted[index];
    }
}

public class PerformanceStats { public int Count { get; set; } public double Average { get; set; } public long Min { get; set; } public long Max { get; set; } public double P95 { get; set; } public double P99 { get; set; } }

๐ŸŽฏ Best Practices

1. Cache Strategically

Good: Cache expensive operations

[optimized] expensive_query: @cache("5m", @query("SELECT COUNT(*) FROM large_table")) api_response: @cache("30s", @http("GET", "https://api.example.com/data")) ml_prediction: @cache("1m", @predict("server_load", @metrics("cpu_usage", 75)))

Good: Use adaptive caching

adaptive_cache: @cache(@if(@metrics("cpu_usage", 0) > 80, "30s", "5m"), @query("SELECT * FROM heavy_table"))

2. Optimize Database Queries

Good: Use efficient queries

[optimized_queries] user_count: @query("SELECT COUNT(*) FROM users WHERE active = 1") user_stats: @query(""" SELECT COUNT(*) as total_users, COUNT(CASE WHEN active = 1 THEN 1 END) as active_users FROM users """)

3. Monitor Performance

// Good: Monitor performance metrics
public async Task<Dictionary<string, object>> GetMonitoredConfigurationAsync(string filePath)
{
    var stopwatch = Stopwatch.StartNew();
    
    try
    {
        var config = await GetOptimizedConfigurationAsync(filePath);
        stopwatch.Stop();
        
        _performanceMonitor.RecordResponseTime("configuration_parse", stopwatch.ElapsedMilliseconds);
        
        return config;
    }
    catch (Exception ex)
    {
        stopwatch.Stop();
        _performanceMonitor.RecordResponseTime("configuration_error", stopwatch.ElapsedMilliseconds);
        throw;
    }
}

4. Use Connection Pooling

// Good: Use connection pooling
var adapter = new PostgreSQLAdapter(new PostgreSQLConfig
{
    Host = "localhost",
    Database = "myapp"
}, new PoolConfig
{
    MaxOpenConns = 50,
    MaxIdleConns = 20,
    ConnMaxLifetime = 300000
});

๐ŸŽ‰ You're Ready!

You've mastered performance optimization with TuskLang! You can now:

- โœ… Implement intelligent caching - Multi-layer caching strategies - โœ… Optimize database queries - Connection pooling and efficient queries - โœ… Optimize ML integration - Batch predictions and model caching - โœ… Optimize HTTP requests - Connection pooling and request batching - โœ… Optimize metrics collection - Adaptive collection and caching - โœ… Optimize memory usage - Weak references and cleanup strategies - โœ… Monitor performance - Real-time performance tracking - โœ… Test performance - Comprehensive performance testing

๐Ÿ”ฅ What's Next?

Ready to deploy to production? Explore:

1. Production Deployment - Deploy to production environments 2. Best Practices - Production best practices and patterns 3. Troubleshooting - Common issues and solutions

---

"We don't bow to any king" - Your performance, your optimization, your speed.

Make your configuration lightning fast! โšก