πΉ @learn Operator in TuskLang - Go Guide
@learn Operator in TuskLang - Go Guide
π§ AI Power: @learn Operator Unleashed
TuskLang's @learn
operator is your machine learning rebellion. We don't bow to any kingβespecially not to static, dumb configurations. Here's how to use @learn
in Go projects to create adaptive, intelligent systems that learn and optimize themselves.
π Table of Contents
- What is @learn? - Basic Usage - Learning Patterns - ML Integration - Go Integration - Best Practicesπ€ What is @learn?
The @learn
operator enables machine learning directly in your config. No more static valuesβjust pure, adaptive intelligence.
π οΈ Basic Usage
[ai]
optimal_timeout: @learn("timeout_optimization", 30)
best_cache_size: @learn("cache_optimization", 1000)
optimal_threads: @learn("thread_optimization", 4)
π§ Learning Patterns
Performance Optimization
[performance]
optimal_connections: @learn("connection_pool", 10)
best_batch_size: @learn("batch_processing", 100)
optimal_timeout: @learn("request_timeout", 5000)
Resource Management
[resources]
optimal_memory: @learn("memory_usage", 512)
best_cpu_cores: @learn("cpu_utilization", 2)
optimal_disk_io: @learn("disk_performance", 1000)
User Behavior
[user_behavior]
optimal_session_time: @learn("session_duration", 3600)
best_notification_freq: @learn("notification_timing", 24)
optimal_retry_attempts: @learn("retry_behavior", 3)
π ML Integration
[ml_config]
model_path: @file.read("models/optimizer.pkl")
training_data: @query("SELECT * FROM performance_metrics")
prediction_interval: @learn("prediction_frequency", 300)
π Go Integration
// Access learned values
optimalTimeout := config.GetInt("optimal_timeout")
bestCacheSize := config.GetInt("best_cache_size")// Update learning data
config.UpdateLearningData("timeout_optimization", map[string]interface{}{
"current_timeout": 45,
"response_time": 120,
"success_rate": 0.95,
})
Custom ML Integration
type MLPredictor struct {
model interface{}
}func (m *MLPredictor) Predict(features map[string]interface{}) (interface{}, error) {
// Implement your ML prediction logic
return 30, nil
}
func (m *MLPredictor) UpdateModel(data []interface{}) error {
// Implement model training/updating
return nil
}
π₯ Best Practices
- Start with conservative default values - Monitor learning performance - Validate learned values before applying - Implement fallback mechanisms - Document learning objectives clearly---
TuskLang: Intelligent configuration with @learn.