🐹 Scaling Applications in TuskLang for Go

Go Documentation

Scaling Applications in TuskLang for Go

Overview

Scaling applications in TuskLang provides powerful scaling configuration and automation capabilities directly in your configuration files. These features enable you to define sophisticated scaling strategies, auto-scaling policies, and resource management with Go integration for high-performance, scalable applications.

Basic Scaling Configuration

// TuskLang scaling configuration
scaling: {
    strategies: {
        horizontal: {
            enabled: true
            min_replicas: 2
            max_replicas: 20
            target_cpu_utilization: 70
            target_memory_utilization: 80
            scale_up_cooldown: "3m"
            scale_down_cooldown: "5m"
            
            metrics: {
                cpu: {
                    enabled: true
                    target: 70
                    window: "5m"
                }
                
                memory: {
                    enabled: true
                    target: 80
                    window: "5m"
                }
                
                custom: {
                    enabled: true
                    metrics: {
                        requests_per_second: {
                            target: 1000
                            window: "2m"
                        }
                        
                        error_rate: {
                            target: 5.0
                            window: "5m"
                        }
                        
                        response_time: {
                            target: "500ms"
                            window: "3m"
                        }
                    }
                }
            }
        }
        
        vertical: {
            enabled: true
            cpu: {
                min: "100m"
                max: "2"
                step: "200m"
            }
            
            memory: {
                min: "128Mi"
                max: "4Gi"
                step: "256Mi"
            }
            
            triggers: {
                cpu_threshold: 80
                memory_threshold: 85
                check_interval: "30s"
            }
        }
        
        database: {
            enabled: true
            read_replicas: {
                enabled: true
                min: 1
                max: 5
                target_load: 60
            }
            
            connection_pooling: {
                enabled: true
                min_connections: 5
                max_connections: 50
                idle_timeout: "5m"
            }
        }
    }
    
    load_balancing: {
        enabled: true
        algorithm: "round_robin"
        
        health_checks: {
            enabled: true
            path: "/health"
            interval: "30s"
            timeout: "5s"
            healthy_threshold: 2
            unhealthy_threshold: 3
        }
        
        session_affinity: {
            enabled: true
            type: "cookie"
            timeout: "1h"
        }
        
        ssl_termination: {
            enabled: true
            certificate: "@env('SSL_CERT_PATH')"
            private_key: "@env('SSL_KEY_PATH')"
        }
    }
    
    caching: {
        distributed: {
            enabled: true
            provider: "redis"
            nodes: ["redis-1:6379", "redis-2:6379", "redis-3:6379"]
            replication: true
            sharding: true
        }
        
        local: {
            enabled: true
            max_size: 10000
            ttl: "1h"
            eviction_policy: "lru"
        }
        
        cdn: {
            enabled: true
            provider: "cloudflare"
            domains: ["cdn.example.com"]
            cache_rules: {
                static_assets: {
                    ttl: "1d"
                    headers: ["Cache-Control: public, max-age=86400"]
                }
                
                api_responses: {
                    ttl: "5m"
                    headers: ["Cache-Control: private, max-age=300"]
                }
            }
        }
    }
    
    monitoring: {
        enabled: true
        metrics: {
            collection: {
                interval: "10s"
                retention: "30d"
            }
            
            aggregation: {
                enabled: true
                functions: ["avg", "min", "max", "p95", "p99"]
                windows: ["1m", "5m", "15m", "1h"]
            }
        }
        
        alerts: {
            enabled: true
            rules: {
                high_cpu: {
                    condition: "cpu_usage > 80"
                    duration: "5m"
                    severity: "warning"
                }
                
                high_memory: {
                    condition: "memory_usage > 85"
                    duration: "3m"
                    severity: "critical"
                }
                
                high_error_rate: {
                    condition: "error_rate > 5"
                    duration: "2m"
                    severity: "critical"
                }
            }
            
            notifications: {
                slack: {
                    enabled: true
                    webhook: "@env('SLACK_WEBHOOK')"
                    channel: "#alerts"
                }
                
                email: {
                    enabled: true
                    smtp: "@env('SMTP_URL')"
                    recipients: ["ops@example.com"]
                }
            }
        }
    }
    
    optimization: {
        enabled: true
        techniques: {
            connection_pooling: {
                enabled: true
                max_connections: 100
                idle_timeout: "5m"
                max_lifetime: "1h"
            }
            
            request_batching: {
                enabled: true
                batch_size: 100
                batch_timeout: "100ms"
            }
            
            response_compression: {
                enabled: true
                algorithms: ["gzip", "brotli"]
                min_size: 1024
            }
            
            caching_strategies: {
                enabled: true
                strategies: ["write_through", "write_behind", "cache_aside"]
            }
        }
    }
}

Go Integration

package main

import ( "context" "fmt" "log" "net/http" "sync" "time" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promhttp" "github.com/tusklang/go-sdk" )

type ScalingConfig struct { Strategies map[string]StrategyConfig tsk:"strategies" LoadBalancing LoadBalancingConfig tsk:"load_balancing" Caching CachingConfig tsk:"caching" Monitoring MonitoringConfig tsk:"monitoring" Optimization OptimizationConfig tsk:"optimization" }

type StrategyConfig struct { Enabled bool tsk:"enabled" Config map[string]interface{} tsk:",inline" }

type LoadBalancingConfig struct { Enabled bool tsk:"enabled" Algorithm string tsk:"algorithm" HealthChecks HealthCheckConfig tsk:"health_checks" SessionAffinity SessionAffinityConfig tsk:"session_affinity" SSLTermination SSLTerminationConfig tsk:"ssl_termination" }

type HealthCheckConfig struct { Enabled bool tsk:"enabled" Path string tsk:"path" Interval string tsk:"interval" Timeout string tsk:"timeout" HealthyThreshold int tsk:"healthy_threshold" UnhealthyThreshold int tsk:"unhealthy_threshold" }

type SessionAffinityConfig struct { Enabled bool tsk:"enabled" Type string tsk:"type" Timeout string tsk:"timeout" }

type SSLTerminationConfig struct { Enabled bool tsk:"enabled" Certificate string tsk:"certificate" PrivateKey string tsk:"private_key" }

type CachingConfig struct { Distributed DistributedCacheConfig tsk:"distributed" Local LocalCacheConfig tsk:"local" CDN CDNConfig tsk:"cdn" }

type DistributedCacheConfig struct { Enabled bool tsk:"enabled" Provider string tsk:"provider" Nodes []string tsk:"nodes" Replication bool tsk:"replication" Sharding bool tsk:"sharding" }

type LocalCacheConfig struct { Enabled bool tsk:"enabled" MaxSize int tsk:"max_size" TTL string tsk:"ttl" EvictionPolicy string tsk:"eviction_policy" }

type CDNConfig struct { Enabled bool tsk:"enabled" Provider string tsk:"provider" Domains []string tsk:"domains" CacheRules map[string]CacheRule tsk:"cache_rules" }

type CacheRule struct { TTL string tsk:"ttl" Headers []string tsk:"headers" }

type MonitoringConfig struct { Enabled bool tsk:"enabled" Metrics MetricsConfig tsk:"metrics" Alerts AlertsConfig tsk:"alerts" }

type MetricsConfig struct { Collection CollectionConfig tsk:"collection" Aggregation AggregationConfig tsk:"aggregation" }

type CollectionConfig struct { Interval string tsk:"interval" Retention string tsk:"retention" }

type AggregationConfig struct { Enabled bool tsk:"enabled" Functions []string tsk:"functions" Windows []string tsk:"windows" }

type AlertsConfig struct { Enabled bool tsk:"enabled" Rules map[string]AlertRule tsk:"rules" Notifications map[string]Notification tsk:"notifications" }

type AlertRule struct { Condition string tsk:"condition" Duration string tsk:"duration" Severity string tsk:"severity" }

type Notification struct { Enabled bool tsk:"enabled" Config map[string]interface{} tsk:",inline" }

type OptimizationConfig struct { Enabled bool tsk:"enabled" Techniques map[string]TechniqueConfig tsk:"techniques" }

type TechniqueConfig struct { Enabled bool tsk:"enabled" Config map[string]interface{} tsk:",inline" }

type ScalingManager struct { config ScalingConfig strategies map[string]ScalingStrategy loadBalancer *LoadBalancer cache *CacheManager monitor *Monitor optimizer *Optimizer }

type ScalingStrategy interface { Scale() error GetStatus() ScalingStatus GetMetrics() map[string]float64 }

type HorizontalScalingStrategy struct { config HorizontalScalingConfig metrics *MetricsCollector replicas int }

type HorizontalScalingConfig struct { MinReplicas int json:"min_replicas" MaxReplicas int json:"max_replicas" TargetCPUUtilization int json:"target_cpu_utilization" TargetMemoryUtilization int json:"target_memory_utilization" ScaleUpCooldown string json:"scale_up_cooldown" ScaleDownCooldown string json:"scale_down_cooldown" Metrics map[string]MetricConfig json:"metrics" }

type MetricConfig struct { Enabled bool json:"enabled" Target float64 json:"target" Window string json:"window" }

type VerticalScalingStrategy struct { config VerticalScalingConfig currentResources ResourceConfig }

type VerticalScalingConfig struct { CPU CPUScalingConfig json:"cpu" Memory MemoryScalingConfig json:"memory" Triggers ScalingTriggers json:"triggers" }

type CPUScalingConfig struct { Min string json:"min" Max string json:"max" Step string json:"step" }

type MemoryScalingConfig struct { Min string json:"min" Max string json:"max" Step string json:"step" }

type ScalingTriggers struct { CPUThreshold int json:"cpu_threshold" MemoryThreshold int json:"memory_threshold" CheckInterval string json:"check_interval" }

type ResourceConfig struct { CPU string json:"cpu" Memory string json:"memory" }

type DatabaseScalingStrategy struct { config DatabaseScalingConfig pool *ConnectionPool }

type DatabaseScalingConfig struct { ReadReplicas ReadReplicaConfig json:"read_replicas" ConnectionPooling PoolConfig json:"connection_pooling" }

type ReadReplicaConfig struct { Enabled bool json:"enabled" Min int json:"min" Max int json:"max" TargetLoad int json:"target_load" }

type PoolConfig struct { Enabled bool json:"enabled" MinConnections int json:"min_connections" MaxConnections int json:"max_connections" IdleTimeout string json:"idle_timeout" }

type LoadBalancer struct { config LoadBalancingConfig nodes []*Node mu sync.RWMutex }

type Node struct { ID string URL string Healthy bool Weight int LastSeen time.Time }

type CacheManager struct { config ScalingConfig distributed *DistributedCache local *LocalCache cdn *CDNManager }

type DistributedCache struct { config DistributedCacheConfig nodes []string }

type LocalCache struct { config LocalCacheConfig data map[string]cacheItem mu sync.RWMutex }

type cacheItem struct { value interface{} expiration time.Time }

type CDNManager struct { config CDNConfig }

type Monitor struct { config MonitoringConfig metrics *MetricsCollector alerter *Alerter }

type MetricsCollector struct { cpuUsage prometheus.Gauge memoryUsage prometheus.Gauge requestRate prometheus.Counter errorRate prometheus.Counter responseTime prometheus.Histogram customMetrics map[string]prometheus.Collector }

type Alerter struct { config AlertsConfig rules map[string]AlertRule }

type Optimizer struct { config OptimizationConfig techniques map[string]OptimizationTechnique }

type OptimizationTechnique interface { Apply() error GetStatus() OptimizationStatus }

type ConnectionPoolingTechnique struct { config map[string]interface{} pool *ConnectionPool }

type RequestBatchingTechnique struct { config map[string]interface{} batches map[string][]interface{} mu sync.Mutex }

type ResponseCompressionTechnique struct { config map[string]interface{} }

type CachingStrategiesTechnique struct { config map[string]interface{} strategies map[string]CachingStrategy }

type CachingStrategy interface { Get(key string) (interface{}, bool) Set(key string, value interface{}) error Delete(key string) error }

type ScalingStatus struct { Status string json:"status" Message string json:"message" Timestamp time.Time json:"timestamp" Metrics map[string]float64 json:"metrics" }

type OptimizationStatus struct { Technique string json:"technique" Status string json:"status" Message string json:"message" Timestamp time.Time json:"timestamp" }

type ConnectionPool struct { config PoolConfig connections chan interface{} mu sync.Mutex }

func main() { // Load scaling configuration config, err := tusk.LoadFile("scaling-config.tsk") if err != nil { log.Fatalf("Error loading scaling config: %v", err) } var scalingConfig ScalingConfig if err := config.Get("scaling", &scalingConfig); err != nil { log.Fatalf("Error parsing scaling config: %v", err) } // Initialize scaling manager scalingManager := NewScalingManager(scalingConfig) // Start scaling manager if err := scalingManager.Start(); err != nil { log.Fatalf("Error starting scaling manager: %v", err) } defer scalingManager.Stop() // Start HTTP server mux := http.NewServeMux() mux.HandleFunc("/", scalingManager.withLoadBalancing(handleHome)) mux.HandleFunc("/api/users", scalingManager.withLoadBalancing(handleUsers)) mux.HandleFunc("/health", handleHealth) // Add metrics endpoint if scalingConfig.Monitoring.Enabled { mux.Handle("/metrics", promhttp.Handler()) } log.Println("Server starting on :8080") log.Fatal(http.ListenAndServe(":8080", mux)) }

func NewScalingManager(config ScalingConfig) *ScalingManager { manager := &ScalingManager{ config: config, strategies: make(map[string]ScalingStrategy), } // Initialize scaling strategies if horizontal, exists := config.Strategies["horizontal"]; exists && horizontal.Enabled { manager.strategies["horizontal"] = NewHorizontalScalingStrategy(horizontal.Config) } if vertical, exists := config.Strategies["vertical"]; exists && vertical.Enabled { manager.strategies["vertical"] = NewVerticalScalingStrategy(vertical.Config) } if database, exists := config.Strategies["database"]; exists && database.Enabled { manager.strategies["database"] = NewDatabaseScalingStrategy(database.Config) } // Initialize load balancer if config.LoadBalancing.Enabled { manager.loadBalancer = NewLoadBalancer(config.LoadBalancing) } // Initialize cache manager manager.cache = NewCacheManager(config) // Initialize monitor if config.Monitoring.Enabled { manager.monitor = NewMonitor(config.Monitoring) } // Initialize optimizer if config.Optimization.Enabled { manager.optimizer = NewOptimizer(config.Optimization) } return manager }

func (sm *ScalingManager) Start() error { // Start monitoring if sm.monitor != nil { if err := sm.monitor.Start(); err != nil { return err } } // Start optimization if sm.optimizer != nil { if err := sm.optimizer.Start(); err != nil { return err } } // Start scaling strategies for name, strategy := range sm.strategies { go func(name string, strategy ScalingStrategy) { for { if err := strategy.Scale(); err != nil { log.Printf("Error in %s scaling strategy: %v", name, err) } time.Sleep(30 * time.Second) } }(name, strategy) } return nil }

func (sm *ScalingManager) Stop() error { // Stop monitoring if sm.monitor != nil { sm.monitor.Stop() } // Stop optimization if sm.optimizer != nil { sm.optimizer.Stop() } return nil }

// Load balancing middleware func (sm *ScalingManager) withLoadBalancing(handler http.HandlerFunc) http.HandlerFunc { return func(w http.ResponseWriter, r *http.Request) { if sm.loadBalancer != nil { // Route request through load balancer node := sm.loadBalancer.GetNextNode() if node != nil { // Forward request to selected node sm.forwardRequest(w, r, node) return } } // Fallback to local handler handler(w, r) } }

func (sm ScalingManager) forwardRequest(w http.ResponseWriter, r http.Request, node *Node) { // Implement request forwarding log.Printf("Forwarding request to node: %s", node.URL) }

// Horizontal Scaling Strategy Implementation func NewHorizontalScalingStrategy(config map[string]interface{}) *HorizontalScalingStrategy { // Parse configuration return &HorizontalScalingStrategy{ replicas: 2, // Default metrics: NewMetricsCollector(), } }

func (hs *HorizontalScalingStrategy) Scale() error { // Get current metrics metrics := hs.GetMetrics() // Check if scaling is needed if hs.shouldScaleUp(metrics) { return hs.scaleUp() } if hs.shouldScaleDown(metrics) { return hs.scaleDown() } return nil }

func (hs *HorizontalScalingStrategy) GetStatus() ScalingStatus { return ScalingStatus{ Status: "active", Message: fmt.Sprintf("Current replicas: %d", hs.replicas), Timestamp: time.Now(), Metrics: hs.GetMetrics(), } }

func (hs *HorizontalScalingStrategy) GetMetrics() map[string]float64 { return map[string]float64{ "cpu_usage": hs.metrics.getCPUUsage(), "memory_usage": hs.metrics.getMemoryUsage(), "request_rate": hs.metrics.getRequestRate(), "error_rate": hs.metrics.getErrorRate(), } }

func (hs *HorizontalScalingStrategy) shouldScaleUp(metrics map[string]float64) bool { // Check if scaling up is needed based on metrics return metrics["cpu_usage"] > float64(hs.config.TargetCPUUtilization) || metrics["memory_usage"] > float64(hs.config.TargetMemoryUtilization) }

func (hs *HorizontalScalingStrategy) shouldScaleDown(metrics map[string]float64) bool { // Check if scaling down is needed based on metrics return metrics["cpu_usage"] < float64(hs.config.TargetCPUUtilization/2) && metrics["memory_usage"] < float64(hs.config.TargetMemoryUtilization/2) }

func (hs *HorizontalScalingStrategy) scaleUp() error { if hs.replicas < hs.config.MaxReplicas { hs.replicas++ log.Printf("Scaling up to %d replicas", hs.replicas) // Implement actual scaling logic } return nil }

func (hs *HorizontalScalingStrategy) scaleDown() error { if hs.replicas > hs.config.MinReplicas { hs.replicas-- log.Printf("Scaling down to %d replicas", hs.replicas) // Implement actual scaling logic } return nil }

// Vertical Scaling Strategy Implementation func NewVerticalScalingStrategy(config map[string]interface{}) *VerticalScalingStrategy { return &VerticalScalingStrategy{ currentResources: ResourceConfig{ CPU: "500m", Memory: "512Mi", }, } }

func (vs *VerticalScalingStrategy) Scale() error { // Implement vertical scaling logic return nil }

func (vs *VerticalScalingStrategy) GetStatus() ScalingStatus { return ScalingStatus{ Status: "active", Message: fmt.Sprintf("Current resources: CPU=%s, Memory=%s", vs.currentResources.CPU, vs.currentResources.Memory), Timestamp: time.Now(), } }

func (vs *VerticalScalingStrategy) GetMetrics() map[string]float64 { return map[string]float64{ "cpu_usage": 50.0, "memory_usage": 60.0, } }

// Database Scaling Strategy Implementation func NewDatabaseScalingStrategy(config map[string]interface{}) *DatabaseScalingStrategy { return &DatabaseScalingStrategy{ pool: NewConnectionPool(PoolConfig{ MinConnections: 5, MaxConnections: 50, IdleTimeout: "5m", }), } }

func (ds *DatabaseScalingStrategy) Scale() error { // Implement database scaling logic return nil }

func (ds *DatabaseScalingStrategy) GetStatus() ScalingStatus { return ScalingStatus{ Status: "active", Message: "Database scaling active", Timestamp: time.Now(), } }

func (ds *DatabaseScalingStrategy) GetMetrics() map[string]float64 { return map[string]float64{ "db_connections": 25.0, "db_load": 45.0, } }

// Load Balancer Implementation func NewLoadBalancer(config LoadBalancingConfig) *LoadBalancer { return &LoadBalancer{ config: config, nodes: make([]*Node, 0), } }

func (lb LoadBalancer) GetNextNode() Node { lb.mu.RLock() defer lb.mu.RUnlock() if len(lb.nodes) == 0 { return nil } // Simple round-robin implementation // In a real implementation, you'd use more sophisticated algorithms for _, node := range lb.nodes { if node.Healthy { return node } } return nil }

// Cache Manager Implementation func NewCacheManager(config ScalingConfig) *CacheManager { manager := &CacheManager{ config: config, } if config.Caching.Distributed.Enabled { manager.distributed = NewDistributedCache(config.Caching.Distributed) } if config.Caching.Local.Enabled { manager.local = NewLocalCache(config.Caching.Local) } if config.Caching.CDN.Enabled { manager.cdn = NewCDNManager(config.Caching.CDN) } return manager }

func NewDistributedCache(config DistributedCacheConfig) *DistributedCache { return &DistributedCache{ config: config, nodes: config.Nodes, } }

func NewLocalCache(config LocalCacheConfig) *LocalCache { ttl, _ := time.ParseDuration(config.TTL) return &LocalCache{ config: config, data: make(map[string]cacheItem), } }

func (lc *LocalCache) Get(key string) (interface{}, bool) { lc.mu.RLock() defer lc.mu.RUnlock() item, exists := lc.data[key] if !exists { return nil, false } if time.Now().After(item.expiration) { delete(lc.data, key) return nil, false } return item.value, true }

func (lc *LocalCache) Set(key string, value interface{}) error { lc.mu.Lock() defer lc.mu.Unlock() ttl, _ := time.ParseDuration(lc.config.TTL) lc.data[key] = cacheItem{ value: value, expiration: time.Now().Add(ttl), } return nil }

func NewCDNManager(config CDNConfig) *CDNManager { return &CDNManager{ config: config, } }

// Monitor Implementation func NewMonitor(config MonitoringConfig) *Monitor { return &Monitor{ config: config, metrics: NewMetricsCollector(), alerter: NewAlerter(config.Alerts), } }

func (m *Monitor) Start() error { // Start metrics collection go m.collectMetrics() // Start alert monitoring go m.monitorAlerts() return nil }

func (m *Monitor) Stop() error { // Stop monitoring return nil }

func (m *Monitor) collectMetrics() { ticker := time.NewTicker(10 * time.Second) defer ticker.Stop() for range ticker.C { m.metrics.UpdateMetrics() } }

func (m *Monitor) monitorAlerts() { ticker := time.NewTicker(30 * time.Second) defer ticker.Stop() for range ticker.C { m.alerter.CheckAlerts(m.metrics.GetMetrics()) } }

func NewMetricsCollector() *MetricsCollector { collector := &MetricsCollector{ customMetrics: make(map[string]prometheus.Collector), } // Initialize Prometheus metrics collector.cpuUsage = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "cpu_usage_percent", Help: "CPU usage percentage", }) collector.memoryUsage = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "memory_usage_bytes", Help: "Memory usage in bytes", }) collector.requestRate = prometheus.NewCounter(prometheus.CounterOpts{ Name: "requests_total", Help: "Total number of requests", }) collector.errorRate = prometheus.NewCounter(prometheus.CounterOpts{ Name: "errors_total", Help: "Total number of errors", }) collector.responseTime = prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "response_time_seconds", Help: "Response time in seconds", Buckets: prometheus.DefBuckets, }) // Register metrics prometheus.MustRegister( collector.cpuUsage, collector.memoryUsage, collector.requestRate, collector.errorRate, collector.responseTime, ) return collector }

func (mc *MetricsCollector) UpdateMetrics() { // Update metrics with current values mc.cpuUsage.Set(mc.getCPUUsage()) mc.memoryUsage.Set(mc.getMemoryUsage()) }

func (mc *MetricsCollector) GetMetrics() map[string]float64 { return map[string]float64{ "cpu_usage": mc.getCPUUsage(), "memory_usage": mc.getMemoryUsage(), "request_rate": mc.getRequestRate(), "error_rate": mc.getErrorRate(), } }

func (mc *MetricsCollector) getCPUUsage() float64 { // Implement CPU usage measurement return 50.0 // Example value }

func (mc *MetricsCollector) getMemoryUsage() float64 { // Implement memory usage measurement return 1024 1024 100 // Example value (100MB) }

func (mc *MetricsCollector) getRequestRate() float64 { // Implement request rate measurement return 100.0 // Example value }

func (mc *MetricsCollector) getErrorRate() float64 { // Implement error rate measurement return 2.5 // Example value }

func NewAlerter(config AlertsConfig) *Alerter { return &Alerter{ config: config, rules: config.Rules, } }

func (a *Alerter) CheckAlerts(metrics map[string]float64) { // Check alert rules against current metrics for ruleName, rule := range a.rules { if a.evaluateRule(rule, metrics) { a.triggerAlert(ruleName, rule) } } }

func (a *Alerter) evaluateRule(rule AlertRule, metrics map[string]float64) bool { // Implement rule evaluation logic return false }

func (a *Alerter) triggerAlert(ruleName string, rule AlertRule) { // Implement alert triggering logic log.Printf("Alert triggered: %s - %s", ruleName, rule.Severity) }

// Optimizer Implementation func NewOptimizer(config OptimizationConfig) *Optimizer { optimizer := &Optimizer{ config: config, techniques: make(map[string]OptimizationTechnique), } // Initialize optimization techniques for name, technique := range config.Techniques { if technique.Enabled { switch name { case "connection_pooling": optimizer.techniques[name] = NewConnectionPoolingTechnique(technique.Config) case "request_batching": optimizer.techniques[name] = NewRequestBatchingTechnique(technique.Config) case "response_compression": optimizer.techniques[name] = NewResponseCompressionTechnique(technique.Config) case "caching_strategies": optimizer.techniques[name] = NewCachingStrategiesTechnique(technique.Config) } } } return optimizer }

func (o *Optimizer) Start() error { // Start optimization techniques for name, technique := range o.techniques { go func(name string, technique OptimizationTechnique) { for { if err := technique.Apply(); err != nil { log.Printf("Error in %s optimization technique: %v", name, err) } time.Sleep(60 * time.Second) } }(name, technique) } return nil }

func (o *Optimizer) Stop() error { // Stop optimization techniques return nil }

// Optimization Techniques Implementation func NewConnectionPoolingTechnique(config map[string]interface{}) *ConnectionPoolingTechnique { return &ConnectionPoolingTechnique{ config: config, pool: NewConnectionPool(PoolConfig{}), } }

func (cpt *ConnectionPoolingTechnique) Apply() error { // Apply connection pooling optimization return nil }

func (cpt *ConnectionPoolingTechnique) GetStatus() OptimizationStatus { return OptimizationStatus{ Technique: "connection_pooling", Status: "active", Message: "Connection pooling optimization active", Timestamp: time.Now(), } }

func NewRequestBatchingTechnique(config map[string]interface{}) *RequestBatchingTechnique { return &RequestBatchingTechnique{ config: config, batches: make(map[string][]interface{}), } }

func (rbt *RequestBatchingTechnique) Apply() error { // Apply request batching optimization return nil }

func (rbt *RequestBatchingTechnique) GetStatus() OptimizationStatus { return OptimizationStatus{ Technique: "request_batching", Status: "active", Message: "Request batching optimization active", Timestamp: time.Now(), } }

func NewResponseCompressionTechnique(config map[string]interface{}) *ResponseCompressionTechnique { return &ResponseCompressionTechnique{ config: config, } }

func (rct *ResponseCompressionTechnique) Apply() error { // Apply response compression optimization return nil }

func (rct *ResponseCompressionTechnique) GetStatus() OptimizationStatus { return OptimizationStatus{ Technique: "response_compression", Status: "active", Message: "Response compression optimization active", Timestamp: time.Now(), } }

func NewCachingStrategiesTechnique(config map[string]interface{}) *CachingStrategiesTechnique { return &CachingStrategiesTechnique{ config: config, strategies: make(map[string]CachingStrategy), } }

func (cst *CachingStrategiesTechnique) Apply() error { // Apply caching strategies optimization return nil }

func (cst *CachingStrategiesTechnique) GetStatus() OptimizationStatus { return OptimizationStatus{ Technique: "caching_strategies", Status: "active", Message: "Caching strategies optimization active", Timestamp: time.Now(), } }

// Connection Pool Implementation func NewConnectionPool(config PoolConfig) *ConnectionPool { return &ConnectionPool{ config: config, connections: make(chan interface{}, config.MaxConnections), } }

// Handler functions func handleHome(w http.ResponseWriter, r *http.Request) { w.Write([]byte("Welcome to the scalable API!")) }

func handleUsers(w http.ResponseWriter, r *http.Request) { w.Header().Set("Content-Type", "application/json") w.Write([]byte({"users": []})) }

func handleHealth(w http.ResponseWriter, r *http.Request) { w.Header().Set("Content-Type", "application/json") w.Write([]byte({"status": "healthy"})) }

Advanced Scaling Features

Auto-Scaling Policies

// TuskLang configuration with auto-scaling policies
scaling: {
    auto_scaling: {
        enabled: true
        policies: {
            cpu_based: {
                enabled: true
                metric: "cpu_utilization"
                target: 70
                scale_up: {
                    adjustment: 1
                    cooldown: "3m"
                }
                scale_down: {
                    adjustment: -1
                    cooldown: "5m"
                }
            }
            
            memory_based: {
                enabled: true
                metric: "memory_utilization"
                target: 80
                scale_up: {
                    adjustment: 1
                    cooldown: "3m"
                }
                scale_down: {
                    adjustment: -1
                    cooldown: "5m"
                }
            }
            
            custom_metric: {
                enabled: true
                metric: "requests_per_second"
                target: 1000
                scale_up: {
                    adjustment: 2
                    cooldown: "2m"
                }
                scale_down: {
                    adjustment: -1
                    cooldown: "10m"
                }
            }
        }
    }
}

Predictive Scaling

// TuskLang configuration with predictive scaling
scaling: {
    predictive: {
        enabled: true
        algorithms: {
            time_series: {
                enabled: true
                window: "24h"
                prediction_horizon: "1h"
            }
            
            machine_learning: {
                enabled: true
                model: "linear_regression"
                features: ["hour", "day_of_week", "historical_load"]
                training_interval: "1d"
            }
        }
        
        scheduling: {
            enabled: true
            patterns: {
                business_hours: {
                    start: "09:00"
                    end: "17:00"
                    timezone: "UTC"
                    scaling_factor: 1.5
                }
                
                weekend: {
                    days: ["Saturday", "Sunday"]
                    scaling_factor: 0.5
                }
            }
        }
    }
}

Performance Considerations

- Scaling Latency: Minimize time to scale up/down - Resource Efficiency: Optimize resource usage during scaling - Monitoring Overhead: Balance monitoring detail with performance - Cache Efficiency: Optimize cache hit rates and eviction policies - Load Distribution: Ensure even load distribution across instances

Security Notes

- Scaling Security: Secure scaling operations and configurations - Access Control: Implement proper access control for scaling operations - Resource Limits: Set appropriate resource limits to prevent abuse - Monitoring Security: Secure monitoring data and endpoints - Cache Security: Implement secure caching policies

Best Practices

1. Gradual Scaling: Scale gradually to avoid sudden load spikes 2. Monitoring: Monitor scaling effectiveness and adjust policies 3. Resource Planning: Plan resources based on expected load patterns 4. Testing: Test scaling policies under various load conditions 5. Documentation: Document scaling policies and procedures 6. Optimization: Continuously optimize scaling policies

Integration Examples

With Kubernetes HPA

import (
    "k8s.io/client-go/kubernetes"
    "k8s.io/client-go/rest"
    "github.com/tusklang/go-sdk"
)

func setupKubernetesHPA(config tusk.Config) { var scalingConfig ScalingConfig config.Get("scaling", &scalingConfig) if horizontal, exists := scalingConfig.Strategies["horizontal"]; exists && horizontal.Enabled { // Configure Kubernetes HPA // Implementation would depend on your Kubernetes setup } }

With Prometheus

import (
    "github.com/prometheus/client_golang/prometheus"
    "github.com/prometheus/client_golang/prometheus/promhttp"
    "github.com/tusklang/go-sdk"
)

func setupPrometheusMetrics(config tusk.Config) { var scalingConfig ScalingConfig config.Get("scaling", &scalingConfig) if scalingConfig.Monitoring.Enabled { // Register custom metrics for scaling prometheus.MustRegister(scalingMetrics...) } }

This comprehensive scaling applications documentation provides Go developers with everything they need to build highly scalable applications using TuskLang's powerful configuration capabilities.