๐ง Advanced Machine Learning Integration with TuskLang & Go
Introduction
TuskLang and Go together unlock a new era of configuration-driven machine learning. Forget YAML hell and brittle pipelinesโdefine, deploy, and monitor ML models with live database queries, @ operators, and Goโs concurrency. This is how rebels do ML.
Key Features
-
Config-driven ML pipelines
-
Real-time model serving
-
A/B testing and canary deployments
-
GPU acceleration
-
Database-driven ML
-
Model monitoring and metrics
-
Security and privacyExample: ML Pipeline in TuskLang
[pipeline]
model: @file.read("models/iris.onnx")
preprocess: @go("ml.Preprocess")
predict: @go("ml.Predict")
metrics: @metrics("inference_latency_ms", 0)
cache: @cache("10m", "ml_predictions")
Go: Model Serving Example
package ml
import (
"github.com/goml/gobrain"
"net/http"
)
func Predict(input []float64) float64 {
// Load model, run prediction
}
Real-Time A/B Testing
[ab_test]
variant_a: @go("ml.PredictA")
variant_b: @go("ml.PredictB")
route: @learn("best_variant", "a")
GPU Acceleration
- Use Go CUDA bindings (e.g., gorgonia.org/cu)
- TuskLang config:
gpu: @env("USE_GPU", false)
Database-Driven ML
[data]
train_query: @query("SELECT * FROM training_data")
Model Monitoring
[monitoring]
latency: @metrics("inference_latency_ms", 0)
accuracy: @metrics("model_accuracy", 0.95)
Security & Privacy
- Use
@encrypt
for sensitive data
- Secure model files with
@env.secure
Best Practices
- Use TuskLang for all pipeline config
- Monitor with @metrics
- Secure with @env.secure and @encrypt
- Use Goโs concurrency for real-time serving
Troubleshooting
- Check Go logs for model errors
- Use TuskLangโs @cache to avoid repeated expensive inference
Conclusion
TuskLang + Go = ML pipelines that are fast, secure, and easy to manage. No YAML, no drama. Just results.