๐ Real-Time Analytics with TuskLang & Go
Introduction
Real-time analytics isnโt a luxuryโitโs a necessity. TuskLang and Go let you build streaming dashboards, anomaly detectors, and predictive engines with config-driven power and Goโs raw speed.
Key Features
-
Streaming data processing
-
Live dashboards
-
Anomaly detection
-
Predictive analytics
-
Event-driven analytics
-
Multi-source analyticsExample: Streaming Analytics Config
[stream]
source: @http("GET", "wss://data.example.com/stream")
process: @go("analytics.ProcessEvent")
metrics: @metrics("events_per_sec", 0)
Go: Streaming Processor Example
package analytics
import (
"github.com/gorilla/websocket"
"log"
)
func ProcessEvent(event []byte) {
// Parse, analyze, store
}
Live Dashboards
- Use TuskLang config to define dashboard sources
- Go serves data via HTTP/WebSocket
Anomaly Detection
[anomaly]
detector: @go("analytics.DetectAnomaly")
threshold: 0.95
Predictive Analytics
- Use Go ML libraries (golearn, gorgonia)
- TuskLang config:
predict: @go("ml.Predict")
Event-Driven Analytics
[event]
trigger: @go("analytics.OnEvent")
action: @go("analytics.HandleAction")
Multi-Source Analytics
- Combine multiple @http, @query, @file.read sources
Best Practices
- Use @metrics for all key stats
- Cache results with @cache
- Secure endpoints with @env.secure
Troubleshooting
- Monitor Go logs for dropped events
- Use TuskLangโs @metrics for real-time health
Conclusion
TuskLang + Go = analytics that never sleep. Stream, analyze, and act in real timeโno excuses.