☕ @learn - Machine Learning Function in Java

Java Documentation

@learn - Machine Learning Function in Java

The @learn operator provides machine learning capabilities for Java applications, integrating with Spring Boot's ML frameworks, TensorFlow, Weka, and enterprise machine learning pipelines.

Basic Syntax

// TuskLang configuration
predicted_value: @learn("price_prediction", 1000.0)
recommendation: @learn("user_recommendation", "default_product")
classification: @learn("spam_detection", "ham")
// Java Spring Boot integration
@Configuration
public class MachineLearningConfig {
    
    @Bean
    public MachineLearningService machineLearningService() {
        return MachineLearningService.builder()
            .framework("tensorflow")
            .modelPath("/models")
            .trainingDataPath("/data")
            .build();
    }
}

Basic Learning

// Java machine learning service
@Component
public class MachineLearningService {
    
    @Autowired
    private MeterRegistry meterRegistry;
    
    private final Map<String, MLModel> modelCache = new ConcurrentHashMap<>();
    
    public PredictionResult learn(String modelName, Object input, Object defaultValue) {
        MLModel model = getOrLoadModel(modelName);
        
        try {
            PredictionResult result = model.predict(input);
            
            // Record prediction metrics
            Timer.builder("ml.prediction.time")
                .tag("model", modelName)
                .register(meterRegistry)
                .record(result.getPredictionTime(), TimeUnit.MILLISECONDS);
            
            Counter.builder("ml.prediction.count")
                .tag("model", modelName)
                .register(meterRegistry)
                .increment();
            
            return result;
        } catch (Exception e) {
            log.warn("Prediction failed for model: {}, using default value: {}", modelName, defaultValue);
            return PredictionResult.builder()
                .prediction(defaultValue)
                .confidence(0.0)
                .isDefault(true)
                .build();
        }
    }
    
    public TrainingResult trainModel(String modelName, List<TrainingData> trainingData) {
        MLModel model = createModel(modelName);
        
        TrainingResult result = model.train(trainingData);
        
        // Record training metrics
        Timer.builder("ml.training.time")
            .tag("model", modelName)
            .register(meterRegistry)
            .record(result.getTrainingTime(), TimeUnit.MILLISECONDS);
        
        Gauge.builder("ml.model.accuracy")
            .tag("model", modelName)
            .register(meterRegistry, () -> result.getAccuracy());
        
        return result;
    }
    
    private MLModel getOrLoadModel(String modelName) {
        return modelCache.computeIfAbsent(modelName, this::loadModel);
    }
    
    private MLModel loadModel(String modelName) {
        // Load model from file system or model registry
        return ModelLoader.load(modelName);
    }
    
    private MLModel createModel(String modelName) {
        // Create new model instance
        return ModelFactory.create(modelName);
    }
}
// TuskLang machine learning
ml_config: {
    # Basic learning
    price_prediction: @learn("price_prediction", 1000.0)
    user_recommendation: @learn("user_recommendation", "default_product")
    spam_detection: @learn("spam_detection", "ham")
    
    # Learning with confidence
    prediction_with_confidence: @learn.confidence("fraud_detection", false, 0.8)
    
    # Batch learning
    batch_predictions: @learn.batch("sentiment_analysis", ["positive", "negative", "neutral"])
}

Supervised Learning

// Java supervised learning
@Component
public class SupervisedLearningService {
    
    @Autowired
    private MachineLearningService mlService;
    
    public ClassificationResult classify(String modelName, Object input, String defaultClass) {
        return mlService.learn(modelName, input, defaultClass);
    }
    
    public RegressionResult predict(String modelName, Object input, double defaultValue) {
        return mlService.learn(modelName, input, defaultValue);
    }
    
    public TrainingResult trainClassificationModel(String modelName, List<ClassificationData> trainingData) {
        return mlService.trainModel(modelName, convertToTrainingData(trainingData));
    }
    
    public TrainingResult trainRegressionModel(String modelName, List<RegressionData> trainingData) {
        return mlService.trainModel(modelName, convertToTrainingData(trainingData));
    }
    
    public ModelEvaluationResult evaluateModel(String modelName, List<TestData> testData) {
        MLModel model = mlService.getModel(modelName);
        return model.evaluate(testData);
    }
}
// TuskLang supervised learning
supervised_learning: {
    # Classification
    email_classification: @learn.classify("email_classifier", "spam", "ham")
    sentiment_analysis: @learn.classify("sentiment_analyzer", "positive", "negative")
    image_classification: @learn.classify("image_classifier", "cat", "dog")
    
    # Regression
    price_prediction: @learn.predict("price_predictor", 1000.0)
    stock_prediction: @learn.predict("stock_predictor", 50.0)
    temperature_prediction: @learn.predict("weather_predictor", 20.0)
    
    # Model training
    train_email_classifier: @learn.train("email_classifier", {
        algorithm: "random_forest"
        training_data: @load_training_data("emails")
        test_split: 0.2
    })
    
    # Model evaluation
    model_evaluation: @learn.evaluate("email_classifier", {
        test_data: @load_test_data("emails")
        metrics: ["accuracy", "precision", "recall", "f1"]
    })
}

Unsupervised Learning

// Java unsupervised learning
@Component
public class UnsupervisedLearningService {
    
    @Autowired
    private MachineLearningService mlService;
    
    public ClusteringResult cluster(String modelName, List<Object> data, int numClusters) {
        return mlService.cluster(modelName, data, numClusters);
    }
    
    public DimensionalityReductionResult reduceDimensions(String modelName, List<Object> data, int dimensions) {
        return mlService.reduceDimensions(modelName, data, dimensions);
    }
    
    public AnomalyDetectionResult detectAnomalies(String modelName, Object input, boolean defaultResult) {
        return mlService.detectAnomalies(modelName, input, defaultResult);
    }
    
    public AssociationRuleResult findAssociations(String modelName, List<Object> transactions, double minSupport) {
        return mlService.findAssociations(modelName, transactions, minSupport);
    }
}
// TuskLang unsupervised learning
unsupervised_learning: {
    # Clustering
    customer_segments: @learn.cluster("customer_clustering", 5)
    document_clusters: @learn.cluster("document_clustering", 10)
    image_clusters: @learn.cluster("image_clustering", 8)
    
    # Dimensionality reduction
    feature_reduction: @learn.reduce_dimensions("pca", 10)
    topic_modeling: @learn.reduce_dimensions("lda", 20)
    
    # Anomaly detection
    fraud_detection: @learn.detect_anomalies("fraud_detector", false)
    network_anomalies: @learn.detect_anomalies("network_detector", false)
    
    # Association rules
    product_associations: @learn.find_associations("market_basket", 0.01)
    web_page_associations: @learn.find_associations("web_usage", 0.005)
}

Deep Learning

// Java deep learning
@Component
public class DeepLearningService {
    
    @Autowired
    private MachineLearningService mlService;
    
    public NeuralNetworkResult predictWithNeuralNetwork(String modelName, Object input, Object defaultValue) {
        return mlService.predictWithNeuralNetwork(modelName, input, defaultValue);
    }
    
    public TrainingResult trainNeuralNetwork(String modelName, NeuralNetworkConfig config, List<TrainingData> data) {
        return mlService.trainNeuralNetwork(modelName, config, data);
    }
    
    public TransferLearningResult transferLearn(String sourceModel, String targetModel, List<TrainingData> data) {
        return mlService.transferLearn(sourceModel, targetModel, data);
    }
    
    public ReinforcementLearningResult reinforcementLearn(String modelName, Environment environment, int episodes) {
        return mlService.reinforcementLearn(modelName, environment, episodes);
    }
}
// TuskLang deep learning
deep_learning: {
    # Neural networks
    image_recognition: @learn.neural_network("image_classifier", "unknown")
    text_generation: @learn.neural_network("text_generator", "default_text")
    speech_recognition: @learn.neural_network("speech_recognizer", "unknown")
    
    # Neural network training
    train_image_classifier: @learn.train_neural_network("image_classifier", {
        architecture: "cnn"
        layers: [32, 64, 128, 256]
        activation: "relu"
        optimizer: "adam"
        learning_rate: 0.001
        epochs: 100
    })
    
    # Transfer learning
    transfer_learning: @learn.transfer("pretrained_resnet", "custom_classifier", {
        freeze_layers: 10
        fine_tune_layers: 5
        learning_rate: 0.0001
    })
    
    # Reinforcement learning
    reinforcement_learning: @learn.reinforcement("q_learning_agent", {
        environment: "cartpole"
        episodes: 1000
        learning_rate: 0.1
        discount_factor: 0.95
    })
}

Feature Engineering

// Java feature engineering
@Component
public class FeatureEngineeringService {
    
    @Autowired
    private MachineLearningService mlService;
    
    public FeatureSet extractFeatures(String modelName, Object input) {
        return mlService.extractFeatures(modelName, input);
    }
    
    public FeatureSet selectFeatures(String modelName, List<String> features, int numFeatures) {
        return mlService.selectFeatures(modelName, features, numFeatures);
    }
    
    public FeatureSet normalizeFeatures(String modelName, FeatureSet features) {
        return mlService.normalizeFeatures(modelName, features);
    }
    
    public FeatureSet encodeCategoricalFeatures(String modelName, FeatureSet features) {
        return mlService.encodeCategoricalFeatures(modelName, features);
    }
    
    public FeatureImportanceResult getFeatureImportance(String modelName) {
        return mlService.getFeatureImportance(modelName);
    }
}
// TuskLang feature engineering
feature_engineering: {
    # Feature extraction
    text_features: @learn.extract_features("text_extractor")
    image_features: @learn.extract_features("image_extractor")
    audio_features: @learn.extract_features("audio_extractor")
    
    # Feature selection
    selected_features: @learn.select_features("feature_selector", 10)
    important_features: @learn.select_features("importance_selector", 5)
    
    # Feature normalization
    normalized_features: @learn.normalize_features("standard_scaler")
    scaled_features: @learn.normalize_features("min_max_scaler")
    
    # Feature encoding
    encoded_features: @learn.encode_categorical("one_hot_encoder")
    label_encoded: @learn.encode_categorical("label_encoder")
    
    # Feature importance
    feature_importance: @learn.feature_importance("random_forest")
}

Model Management

// Java model management
@Component
public class ModelManagementService {
    
    @Autowired
    private MachineLearningService mlService;
    
    public ModelVersion saveModel(String modelName, MLModel model) {
        return mlService.saveModel(modelName, model);
    }
    
    public MLModel loadModel(String modelName, String version) {
        return mlService.loadModel(modelName, version);
    }
    
    public ModelComparisonResult compareModels(String modelName, List<String> versions) {
        return mlService.compareModels(modelName, versions);
    }
    
    public ModelDeploymentResult deployModel(String modelName, String version, DeploymentConfig config) {
        return mlService.deployModel(modelName, version, config);
    }
    
    public ModelMonitoringResult monitorModel(String modelName) {
        return mlService.monitorModel(modelName);
    }
}
// TuskLang model management
model_management: {
    # Model versioning
    save_model: @learn.save_model("email_classifier", "v1.0")
    load_model: @learn.load_model("email_classifier", "v1.0")
    
    # Model comparison
    model_comparison: @learn.compare_models("email_classifier", ["v1.0", "v1.1", "v1.2"])
    
    # Model deployment
    deploy_model: @learn.deploy_model("email_classifier", "v1.2", {
        environment: "production"
        replicas: 3
        resources: { cpu: "2", memory: "4Gi" }
    })
    
    # Model monitoring
    model_monitoring: @learn.monitor_model("email_classifier", {
        metrics: ["accuracy", "latency", "throughput"]
        alerts: { accuracy_threshold: 0.9, latency_threshold: 100 }
    })
}

A/B Testing

// Java A/B testing
@Component
public class ABTestingService {
    
    @Autowired
    private MachineLearningService mlService;
    
    public ABTestResult runABTest(String testName, String modelA, String modelB, 
                                 List<TestData> testData, double trafficSplit) {
        return mlService.runABTest(testName, modelA, modelB, testData, trafficSplit);
    }
    
    public ABTestResult getABTestResult(String testName) {
        return mlService.getABTestResult(testName);
    }
    
    public boolean isTestSignificant(String testName, double confidenceLevel) {
        ABTestResult result = getABTestResult(testName);
        return result.isStatisticallySignificant(confidenceLevel);
    }
    
    public String getWinningModel(String testName) {
        ABTestResult result = getABTestResult(testName);
        return result.getWinningModel();
    }
}
// TuskLang A/B testing
ab_testing: {
    # A/B test setup
    ab_test: @learn.ab_test("recommendation_test", {
        model_a: "collaborative_filtering"
        model_b: "content_based"
        traffic_split: 0.5
        test_duration: "7d"
        success_metric: "click_through_rate"
    })
    
    # A/B test results
    test_results: @learn.ab_test_results("recommendation_test")
    winning_model: @learn.ab_test_winner("recommendation_test")
    statistical_significance: @learn.ab_test_significance("recommendation_test", 0.95)
}

Model Explainability

// Java model explainability
@Component
public class ModelExplainabilityService {
    
    @Autowired
    private MachineLearningService mlService;
    
    public ExplanationResult explainPrediction(String modelName, Object input) {
        return mlService.explainPrediction(modelName, input);
    }
    
    public FeatureAttributionResult getFeatureAttribution(String modelName, Object input) {
        return mlService.getFeatureAttribution(modelName, input);
    }
    
    public SHAPResult getSHAPValues(String modelName, Object input) {
        return mlService.getSHAPValues(modelName, input);
    }
    
    public LIMEResult getLIMEExplanation(String modelName, Object input) {
        return mlService.getLIMEExplanation(modelName, input);
    }
}
// TuskLang model explainability
model_explainability: {
    # Prediction explanation
    explanation: @learn.explain_prediction("fraud_detector", {
        prediction: true
        confidence: 0.95
        features: ["transaction_amount", "location", "time"]
    })
    
    # Feature attribution
    feature_attribution: @learn.feature_attribution("fraud_detector", {
        transaction_amount: 0.6
        location: 0.3
        time: 0.1
    })
    
    # SHAP values
    shap_values: @learn.shap_values("fraud_detector", {
        base_value: 0.1
        feature_values: { transaction_amount: 0.5, location: 0.2, time: 0.1 }
    })
    
    # LIME explanation
    lime_explanation: @learn.lime_explanation("fraud_detector", {
        local_prediction: true
        feature_weights: { transaction_amount: 0.8, location: 0.1, time: 0.1 }
    })
}

Model Testing

// JUnit test for machine learning
@SpringBootTest
class MachineLearningServiceTest {
    
    @Autowired
    private MachineLearningService mlService;
    
    @Test
    void testBasicLearning() {
        PredictionResult result = mlService.learn("test_model", "test_input", "default_value");
        
        assertThat(result).isNotNull();
        assertThat(result.getPrediction()).isNotNull();
        assertThat(result.getConfidence()).isBetween(0.0, 1.0);
    }
    
    @Test
    void testModelTraining() {
        List<TrainingData> trainingData = createTestTrainingData();
        
        TrainingResult result = mlService.trainModel("test_model", trainingData);
        
        assertThat(result).isNotNull();
        assertThat(result.getAccuracy()).isBetween(0.0, 1.0);
        assertThat(result.getTrainingTime()).isPositive();
    }
    
    @Test
    void testClassification() {
        ClassificationResult result = mlService.classify("test_classifier", "test_input", "default_class");
        
        assertThat(result).isNotNull();
        assertThat(result.getPrediction()).isInstanceOf(String.class);
        assertThat(result.getConfidence()).isBetween(0.0, 1.0);
    }
    
    private List<TrainingData> createTestTrainingData() {
        // Create test training data
        return Arrays.asList(
            new TrainingData("input1", "output1"),
            new TrainingData("input2", "output2"),
            new TrainingData("input3", "output3")
        );
    }
}
// TuskLang machine learning testing
test_machine_learning: {
    # Test basic learning
    test_prediction: @learn("test_model", "test_input", "default_value")
    assert(@test_prediction != "default_value", "Should make prediction")
    assert(@test_prediction.confidence > 0, "Should have confidence")
    
    # Test classification
    test_classification: @learn.classify("test_classifier", "test_input", "default_class")
    assert(@test_classification in ["class1", "class2", "class3"], "Should classify correctly")
    
    # Test regression
    test_regression: @learn.predict("test_predictor", 100.0)
    assert(@test_regression > 0, "Should predict positive value")
    
    # Test model training
    training_result: @learn.train("test_model", {
        algorithm: "random_forest"
        training_data: @create_test_data()
    })
    assert(@training_result.accuracy > 0.5, "Should have reasonable accuracy")
}

Best Practices

1. Model Lifecycle Management

// Implement comprehensive model lifecycle management
@Component
public class ModelLifecycleService {
    
    @Autowired
    private MachineLearningService mlService;
    
    public ModelLifecycleResult manageModelLifecycle(String modelName) {
        // 1. Train model
        TrainingResult trainingResult = trainModel(modelName);
        
        // 2. Evaluate model
        ModelEvaluationResult evaluationResult = evaluateModel(modelName);
        
        // 3. Deploy model if performance is acceptable
        if (evaluationResult.getAccuracy() > 0.9) {
            ModelDeploymentResult deploymentResult = deployModel(modelName);
            
            // 4. Monitor model performance
            ModelMonitoringResult monitoringResult = monitorModel(modelName);
            
            return ModelLifecycleResult.builder()
                .training(trainingResult)
                .evaluation(evaluationResult)
                .deployment(deploymentResult)
                .monitoring(monitoringResult)
                .build();
        }
        
        return ModelLifecycleResult.builder()
            .training(trainingResult)
            .evaluation(evaluationResult)
            .build();
    }
}

2. Continuous Learning

// Implement continuous learning pipeline
@Component
public class ContinuousLearningService {
    
    @Autowired
    private MachineLearningService mlService;
    
    @Scheduled(fixedRate = 86400000) // Daily
    public void performContinuousLearning() {
        // Collect new training data
        List<TrainingData> newData = collectNewTrainingData();
        
        // Retrain models with new data
        for (String modelName : getActiveModels()) {
            TrainingResult result = mlService.trainModel(modelName, newData);
            
            // Update model if performance improves
            if (result.getAccuracy() > getCurrentModelAccuracy(modelName)) {
                mlService.saveModel(modelName, result.getModel());
                log.info("Updated model {} with improved accuracy: {}", modelName, result.getAccuracy());
            }
        }
    }
}

3. Model Monitoring and Alerting

// Implement comprehensive model monitoring
@Component
public class ModelMonitoringService {
    
    @Autowired
    private MachineLearningService mlService;
    
    @Scheduled(fixedRate = 300000) // Every 5 minutes
    public void monitorModels() {
        for (String modelName : getActiveModels()) {
            ModelMonitoringResult result = mlService.monitorModel(modelName);
            
            // Check for performance degradation
            if (result.getAccuracy() < 0.8) {
                sendAlert("Model accuracy below threshold: " + modelName);
            }
            
            // Check for data drift
            if (result.getDataDriftScore() > 0.1) {
                sendAlert("Data drift detected for model: " + modelName);
            }
            
            // Check for prediction latency
            if (result.getAverageLatency() > 100) {
                sendAlert("High prediction latency for model: " + modelName);
            }
        }
    }
}

The @learn operator in Java provides comprehensive machine learning capabilities that enable applications to make intelligent predictions, classifications, and decisions based on data patterns and trained models in enterprise environments.