☕ @optimize - Optimization Function in Java

Java Documentation

@optimize - Optimization Function in Java

The @optimize operator provides intelligent optimization capabilities for Java applications, integrating with Spring Boot's performance monitoring, JVM optimization tools, and enterprise optimization algorithms.

Basic Syntax

// TuskLang configuration
optimal_setting: @optimize("cache_size", 100, 1000)
optimal_threads: @optimize("thread_pool_size", 4, 32)
optimal_timeout: @optimize("request_timeout", 1000, 10000)
// Java Spring Boot integration
@Configuration
public class OptimizationConfig {
    
    @Bean
    public OptimizationService optimizationService() {
        return OptimizationService.builder()
            .algorithm("genetic")
            .iterations(1000)
            .populationSize(50)
            .build();
    }
}

Basic Optimization

// Java optimization service
@Component
public class OptimizationService {
    
    @Autowired
    private MeterRegistry meterRegistry;
    
    private final Map<String, OptimizationResult> optimizationCache = new ConcurrentHashMap<>();
    
    public OptimizationResult optimize(String parameter, double minValue, double maxValue) {
        String cacheKey = parameter + "_" + minValue + "_" + maxValue;
        
        return optimizationCache.computeIfAbsent(cacheKey, key -> {
            return performOptimization(parameter, minValue, maxValue);
        });
    }
    
    public OptimizationResult optimize(String parameter, double minValue, double maxValue, 
                                     OptimizationConstraints constraints) {
        return performConstrainedOptimization(parameter, minValue, maxValue, constraints);
    }
    
    private OptimizationResult performOptimization(String parameter, double minValue, double maxValue) {
        // Genetic algorithm implementation
        GeneticAlgorithm ga = new GeneticAlgorithm.Builder()
            .populationSize(50)
            .iterations(1000)
            .mutationRate(0.1)
            .crossoverRate(0.8)
            .build();
        
        return ga.optimize(new OptimizationProblem(parameter, minValue, maxValue));
    }
    
    private OptimizationResult performConstrainedOptimization(String parameter, double minValue, 
                                                             double maxValue, OptimizationConstraints constraints) {
        // Constrained optimization implementation
        ConstrainedOptimizer optimizer = new ConstrainedOptimizer.Builder()
            .algorithm("interior-point")
            .constraints(constraints)
            .build();
        
        return optimizer.optimize(new OptimizationProblem(parameter, minValue, maxValue));
    }
}
// TuskLang optimization
optimization_config: {
    # Basic optimization
    cache_size: @optimize("cache_size", 100, 1000)
    thread_pool_size: @optimize("thread_pool_size", 4, 32)
    request_timeout: @optimize("request_timeout", 1000, 10000)
    
    # Constrained optimization
    memory_limit: @optimize("memory_limit", 512, 4096, {
        constraint: "memory_usage < 80%"
        constraint: "response_time < 200ms"
    })
    
    # Multi-parameter optimization
    optimal_config: @optimize.multi({
        cache_size: [100, 1000]
        thread_pool_size: [4, 32]
        connection_pool_size: [10, 100]
    })
}

Performance Optimization

// Java performance optimization
@Component
public class PerformanceOptimizationService {
    
    @Autowired
    private OptimizationService optimizationService;
    
    @Autowired
    private MeterRegistry meterRegistry;
    
    public PerformanceOptimizationResult optimizePerformance() {
        // Collect current performance metrics
        PerformanceMetrics currentMetrics = collectPerformanceMetrics();
        
        // Define optimization parameters
        Map<String, OptimizationRange> parameters = Map.of(
            "cache_size", new OptimizationRange(100, 1000),
            "thread_pool_size", new OptimizationRange(4, 32),
            "connection_pool_size", new OptimizationRange(10, 100),
            "batch_size", new OptimizationRange(10, 1000)
        );
        
        // Perform optimization
        return optimizationService.optimizePerformance(parameters, currentMetrics);
    }
    
    public DatabaseOptimizationResult optimizeDatabase() {
        return optimizationService.optimizeDatabase(new DatabaseOptimizationRequest(
            getCurrentQueryMetrics(),
            getCurrentIndexUsage(),
            getCurrentConnectionMetrics()
        ));
    }
    
    public MemoryOptimizationResult optimizeMemory() {
        return optimizationService.optimizeMemory(new MemoryOptimizationRequest(
            getCurrentMemoryUsage(),
            getCurrentGarbageCollectionMetrics(),
            getCurrentMemoryLeakDetection()
        ));
    }
    
    private PerformanceMetrics collectPerformanceMetrics() {
        return PerformanceMetrics.builder()
            .responseTime(getAverageResponseTime())
            .throughput(getCurrentThroughput())
            .errorRate(getCurrentErrorRate())
            .memoryUsage(getCurrentMemoryUsage())
            .cpuUsage(getCurrentCpuUsage())
            .build();
    }
}
// TuskLang performance optimization
performance_optimization: {
    # Performance optimization
    optimal_performance: @optimize.performance({
        cache_size: [100, 1000]
        thread_pool_size: [4, 32]
        connection_pool_size: [10, 100]
        batch_size: [10, 1000]
    })
    
    # Database optimization
    optimal_database: @optimize.database({
        query_timeout: [1000, 10000]
        connection_pool_size: [10, 100]
        batch_size: [100, 10000]
        index_strategy: ["auto", "manual", "hybrid"]
    })
    
    # Memory optimization
    optimal_memory: @optimize.memory({
        heap_size: [512, 4096]
        gc_strategy: ["G1GC", "ParallelGC", "CMS"]
        young_gen_ratio: [0.1, 0.5]
    })
}

Machine Learning Optimization

// Java ML optimization
@Component
public class MachineLearningOptimizationService {
    
    @Autowired
    private OptimizationService optimizationService;
    
    public ModelOptimizationResult optimizeModel(String modelType, Map<String, Object> parameters) {
        return optimizationService.optimizeModel(new ModelOptimizationRequest(
            modelType,
            parameters,
            getTrainingData(),
            getValidationData()
        ));
    }
    
    public HyperparameterOptimizationResult optimizeHyperparameters(String algorithm, 
                                                                   Map<String, OptimizationRange> hyperparameters) {
        return optimizationService.optimizeHyperparameters(new HyperparameterOptimizationRequest(
            algorithm,
            hyperparameters,
            getTrainingData(),
            getValidationData(),
            "accuracy" // optimization metric
        ));
    }
    
    public FeatureOptimizationResult optimizeFeatures(List<String> features, 
                                                     Map<String, Object> constraints) {
        return optimizationService.optimizeFeatures(new FeatureOptimizationRequest(
            features,
            constraints,
            getTrainingData(),
            getValidationData()
        ));
    }
}
// TuskLang ML optimization
ml_optimization: {
    # Model optimization
    optimal_model: @optimize.model("random_forest", {
        n_estimators: [10, 200]
        max_depth: [3, 20]
        min_samples_split: [2, 20]
        min_samples_leaf: [1, 10]
    })
    
    # Hyperparameter optimization
    optimal_hyperparameters: @optimize.hyperparameters("xgboost", {
        learning_rate: [0.01, 0.3]
        max_depth: [3, 15]
        subsample: [0.6, 1.0]
        colsample_bytree: [0.6, 1.0]
    })
    
    # Feature optimization
    optimal_features: @optimize.features([
        "feature1", "feature2", "feature3", "feature4", "feature5"
    ], {
        max_features: 3
        min_importance: 0.1
    })
}

Resource Optimization

// Java resource optimization
@Component
public class ResourceOptimizationService {
    
    @Autowired
    private OptimizationService optimizationService;
    
    public ResourceOptimizationResult optimizeResources() {
        return optimizationService.optimizeResources(new ResourceOptimizationRequest(
            getCurrentResourceUsage(),
            getResourceConstraints(),
            getPerformanceRequirements()
        ));
    }
    
    public CpuOptimizationResult optimizeCpu() {
        return optimizationService.optimizeCpu(new CpuOptimizationRequest(
            getCurrentCpuUsage(),
            getCpuConstraints(),
            getPerformanceTargets()
        ));
    }
    
    public MemoryOptimizationResult optimizeMemory() {
        return optimizationService.optimizeMemory(new MemoryOptimizationRequest(
            getCurrentMemoryUsage(),
            getMemoryConstraints(),
            getMemoryRequirements()
        ));
    }
    
    public NetworkOptimizationResult optimizeNetwork() {
        return optimizationService.optimizeNetwork(new NetworkOptimizationRequest(
            getCurrentNetworkUsage(),
            getNetworkConstraints(),
            getNetworkRequirements()
        ));
    }
}
// TuskLang resource optimization
resource_optimization: {
    # Resource optimization
    optimal_resources: @optimize.resources({
        cpu_cores: [1, 16]
        memory_gb: [1, 32]
        disk_gb: [10, 1000]
        network_mbps: [100, 10000]
    })
    
    # CPU optimization
    optimal_cpu: @optimize.cpu({
        cores: [1, 16]
        frequency: [1.0, 4.0]
        cache_size: [1, 32]
    })
    
    # Memory optimization
    optimal_memory: @optimize.memory({
        heap_size: [512, 8192]
        stack_size: [128, 1024]
        direct_memory: [64, 2048]
    })
    
    # Network optimization
    optimal_network: @optimize.network({
        bandwidth: [100, 10000]
        latency: [1, 100]
        connections: [100, 10000]
    })
}

Algorithm Selection

// Java algorithm selection
@Component
public class AlgorithmSelectionService {
    
    @Autowired
    private OptimizationService optimizationService;
    
    public AlgorithmSelectionResult selectOptimalAlgorithm(String problemType, 
                                                          Map<String, Object> constraints) {
        return optimizationService.selectAlgorithm(new AlgorithmSelectionRequest(
            problemType,
            constraints,
            getAvailableAlgorithms(),
            getPerformanceHistory()
        ));
    }
    
    public OptimizationAlgorithm getBestAlgorithm(String parameter, double minValue, double maxValue) {
        List<OptimizationAlgorithm> algorithms = Arrays.asList(
            new GeneticAlgorithm(),
            new ParticleSwarmOptimization(),
            new SimulatedAnnealing(),
            new GradientDescent()
        );
        
        return optimizationService.selectBestAlgorithm(parameter, minValue, maxValue, algorithms);
    }
    
    public Map<String, OptimizationAlgorithm> getOptimalAlgorithms(Map<String, OptimizationRange> parameters) {
        return optimizationService.selectOptimalAlgorithms(parameters);
    }
}
// TuskLang algorithm selection
algorithm_selection: {
    # Algorithm selection
    best_algorithm: @optimize.algorithm("cache_size", 100, 1000)
    
    # Multi-algorithm comparison
    algorithm_comparison: @optimize.compare_algorithms("thread_pool_size", 4, 32, [
        "genetic", "particle_swarm", "simulated_annealing", "gradient_descent"
    ])
    
    # Problem-specific algorithm selection
    problem_algorithms: @optimize.select_algorithm("performance_optimization", {
        genetic: { population_size: 50, iterations: 1000 }
        particle_swarm: { particles: 30, iterations: 500 }
        simulated_annealing: { temperature: 1000, cooling_rate: 0.95 }
    })
}

Optimization Monitoring

// Java optimization monitoring
@Component
public class OptimizationMonitoringService {
    
    @Autowired
    private OptimizationService optimizationService;
    
    @Autowired
    private MeterRegistry meterRegistry;
    
    public void monitorOptimization(String parameter, OptimizationResult result) {
        // Record optimization metrics
        Gauge.builder("optimization.parameter.value")
            .tag("parameter", parameter)
            .register(meterRegistry, () -> result.getOptimalValue());
        
        Gauge.builder("optimization.performance.improvement")
            .tag("parameter", parameter)
            .register(meterRegistry, () -> result.getPerformanceImprovement());
        
        Gauge.builder("optimization.iterations")
            .tag("parameter", parameter)
            .register(meterRegistry, () -> result.getIterations());
        
        // Log optimization results
        log.info("Optimization completed for parameter: {}, optimal value: {}, improvement: {}%",
            parameter, result.getOptimalValue(), result.getPerformanceImprovement());
    }
    
    public OptimizationMetrics getOptimizationMetrics() {
        return OptimizationMetrics.builder()
            .totalOptimizations(getTotalOptimizations())
            .averageImprovement(getAverageImprovement())
            .bestOptimization(getBestOptimization())
            .optimizationHistory(getOptimizationHistory())
            .build();
    }
}
// TuskLang optimization monitoring
optimization_monitoring: {
    # Monitor optimization
    @optimize.monitor("cache_size")
    @optimize.monitor("thread_pool_size")
    @optimize.monitor("connection_pool_size")
    
    # Optimization metrics
    optimization_metrics: {
        total_optimizations: @optimize.metrics.total()
        average_improvement: @optimize.metrics.average_improvement()
        best_optimization: @optimize.metrics.best()
        optimization_history: @optimize.metrics.history()
    }
    
    # Performance tracking
    performance_tracking: {
        before_optimization: @optimize.performance.before()
        after_optimization: @optimize.performance.after()
        improvement_percentage: @optimize.performance.improvement()
    }
}

Optimization Testing

// JUnit test for optimization
@SpringBootTest
class OptimizationServiceTest {
    
    @Autowired
    private OptimizationService optimizationService;
    
    @Test
    void testBasicOptimization() {
        OptimizationResult result = optimizationService.optimize("test_parameter", 1.0, 100.0);
        
        assertThat(result).isNotNull();
        assertThat(result.getOptimalValue()).isBetween(1.0, 100.0);
        assertThat(result.getPerformanceImprovement()).isGreaterThan(0.0);
        assertThat(result.getIterations()).isGreaterThan(0);
    }
    
    @Test
    void testConstrainedOptimization() {
        OptimizationConstraints constraints = OptimizationConstraints.builder()
            .addConstraint("value > 10")
            .addConstraint("value < 90")
            .build();
        
        OptimizationResult result = optimizationService.optimize("test_parameter", 1.0, 100.0, constraints);
        
        assertThat(result.getOptimalValue()).isBetween(10.0, 90.0);
    }
    
    @Test
    void testPerformanceOptimization() {
        PerformanceOptimizationResult result = optimizationService.optimizePerformance();
        
        assertThat(result).isNotNull();
        assertThat(result.getOptimizedParameters()).isNotEmpty();
        assertThat(result.getPerformanceImprovement()).isGreaterThan(0.0);
    }
}
// TuskLang optimization testing
test_optimization: {
    # Test basic optimization
    test_result: @optimize("test_parameter", 1.0, 100.0)
    assert(@test_result.optimal_value >= 1.0, "Optimal value should be >= 1.0")
    assert(@test_result.optimal_value <= 100.0, "Optimal value should be <= 100.0")
    assert(@test_result.improvement > 0, "Should show improvement")
    
    # Test constrained optimization
    constrained_result: @optimize("test_parameter", 1.0, 100.0, {
        constraint: "value > 10"
        constraint: "value < 90"
    })
    assert(@constrained_result.optimal_value > 10, "Should respect lower constraint")
    assert(@constrained_result.optimal_value < 90, "Should respect upper constraint")
    
    # Test performance optimization
    performance_result: @optimize.performance({
        cache_size: [100, 1000]
        thread_pool_size: [4, 32]
    })
    assert(@performance_result.optimized_parameters.cache_size > 0, "Should optimize cache size")
    assert(@performance_result.optimized_parameters.thread_pool_size > 0, "Should optimize thread pool")
}

Best Practices

1. Optimization Strategy

// Use appropriate optimization strategies
@Component
public class OptimizationStrategyService {
    
    @Autowired
    private OptimizationService optimizationService;
    
    public OptimizationResult optimizeWithStrategy(String parameter, OptimizationStrategy strategy) {
        switch (strategy) {
            case PERFORMANCE:
                return optimizeForPerformance(parameter);
            case RESOURCE_EFFICIENCY:
                return optimizeForResourceEfficiency(parameter);
            case COST_EFFECTIVENESS:
                return optimizeForCostEffectiveness(parameter);
            default:
                return optimizationService.optimize(parameter, 0.0, 100.0);
        }
    }
    
    private OptimizationResult optimizeForPerformance(String parameter) {
        // Focus on performance metrics
        return optimizationService.optimize(parameter, 0.0, 100.0, 
            OptimizationConstraints.builder()
                .addConstraint("response_time < 200ms")
                .addConstraint("throughput > 1000 req/s")
                .build());
    }
    
    private OptimizationResult optimizeForResourceEfficiency(String parameter) {
        // Focus on resource usage
        return optimizationService.optimize(parameter, 0.0, 100.0,
            OptimizationConstraints.builder()
                .addConstraint("memory_usage < 80%")
                .addConstraint("cpu_usage < 70%")
                .build());
    }
}

2. Continuous Optimization

// Implement continuous optimization
@Component
public class ContinuousOptimizationService {
    
    @Autowired
    private OptimizationService optimizationService;
    
    @Scheduled(fixedRate = 3600000) // Every hour
    public void performContinuousOptimization() {
        // Collect current performance metrics
        PerformanceMetrics currentMetrics = collectCurrentMetrics();
        
        // Check if optimization is needed
        if (needsOptimization(currentMetrics)) {
            // Perform optimization
            OptimizationResult result = optimizationService.optimizePerformance();
            
            // Apply optimization if improvement is significant
            if (result.getPerformanceImprovement() > 5.0) {
                applyOptimization(result);
                log.info("Applied optimization with {}% improvement", result.getPerformanceImprovement());
            }
        }
    }
    
    private boolean needsOptimization(PerformanceMetrics metrics) {
        return metrics.getResponseTime() > 200 || 
               metrics.getErrorRate() > 1.0 || 
               metrics.getMemoryUsage() > 80.0;
    }
}

3. Optimization Validation

// Validate optimization results
@Component
public class OptimizationValidationService {
    
    @Autowired
    private OptimizationService optimizationService;
    
    public boolean validateOptimization(OptimizationResult result) {
        // Check if optimization is within acceptable bounds
        if (result.getOptimalValue() < result.getMinValue() || 
            result.getOptimalValue() > result.getMaxValue()) {
            return false;
        }
        
        // Check if performance improvement is significant
        if (result.getPerformanceImprovement() < 1.0) {
            return false;
        }
        
        // Check if optimization didn't introduce new issues
        if (result.getErrorRate() > 0.1) {
            return false;
        }
        
        return true;
    }
    
    public void rollbackOptimization(String parameter) {
        // Rollback to previous optimal value
        OptimizationResult previousResult = getPreviousOptimization(parameter);
        if (previousResult != null) {
            applyOptimization(previousResult);
            log.info("Rolled back optimization for parameter: {}", parameter);
        }
    }
}

The @optimize operator in Java provides intelligent optimization capabilities that can automatically tune application parameters for optimal performance, resource usage, and cost-effectiveness in enterprise environments.