☕ 🚀 Query Optimization in TuskLang Java

Java Documentation

🚀 Query Optimization in TuskLang Java

"We don't bow to any king" - Optimize like a Java master

TuskLang Java provides enterprise-grade query optimization with JPA integration, connection pooling, and intelligent caching strategies that make your database operations fly.

🎯 Overview

Query optimization in TuskLang Java combines the power of modern Java database technologies with TuskLang's intelligent configuration system. From JPA query optimization to connection pooling and caching strategies, we'll show you how to squeeze every drop of performance from your database operations.

🔧 Core Optimization Features

1. JPA Query Optimization

import org.tusklang.java.TuskLang;
import org.tusklang.java.jpa.TuskJPAOptimizer;
import javax.persistence.EntityManager;
import java.util.Map;

public class JPAOptimizationExample { public static void main(String[] args) { TuskLang parser = new TuskLang(); TuskJPAOptimizer optimizer = new TuskJPAOptimizer(); // Optimized TSK configuration String tskContent = """ [database] # Enable query optimization optimize_queries: true enable_query_cache: true batch_size: 100 [jpa] # JPA-specific optimizations enable_second_level_cache: true enable_query_cache: true batch_fetch_size: 50 default_batch_fetch_size: 16 [queries] # Pre-optimized queries with hints user_stats: @query.optimized(""" SELECT COUNT(*) as total_users, COUNT(CASE WHEN active = 1 THEN 1 END) as active_users, AVG(age) as avg_age FROM users WHERE created_at > ? """, @date.subtract("30d")) .hint("org.hibernate.comment", "User statistics query") .hint("org.hibernate.fetchSize", 100) .cache("5m") recent_orders: @query.optimized(""" SELECT o.*, u.name as user_name FROM orders o JOIN users u ON o.user_id = u.id WHERE o.created_at > ? ORDER BY o.created_at DESC LIMIT 50 """, @date.subtract("7d")) .hint("org.hibernate.comment", "Recent orders with user info") .hint("org.hibernate.fetchSize", 50) .cache("2m") """; Map<String, Object> config = parser.parse(tskContent); // Apply optimizations to EntityManager EntityManager em = getEntityManager(); optimizer.applyOptimizations(em, config); } }

2. Connection Pooling Optimization

import org.tusklang.java.TuskLang;
import org.tusklang.java.pool.TuskConnectionPool;
import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.util.Map;

public class ConnectionPoolExample { public static void main(String[] args) { TuskLang parser = new TuskLang(); String tskContent = """ [connection_pool] # HikariCP optimization pool_name: "TuskPool" maximum_pool_size: 20 minimum_idle: 5 connection_timeout: 30000 idle_timeout: 600000 max_lifetime: 1800000 leak_detection_threshold: 60000 [pool_optimization] # Performance tuning cache_prep_stmts: true prep_stmt_cache_size: 250 prep_stmt_cache_sql_limit: 2048 use_server_prep_stmts: true use_local_session_state: true rewrite_batched_statements: true cache_result_set_metadata: true cache_server_configuration: true elide_set_auto_commits: true maintain_time_stats: false [monitoring] # Pool monitoring enable_metrics: true enable_jmx: true register_mbeans: true """; Map<String, Object> config = parser.parse(tskContent); // Create optimized connection pool HikariConfig hikariConfig = new HikariConfig(); hikariConfig.setPoolName((String) config.get("connection_pool.pool_name")); hikariConfig.setMaximumPoolSize((Integer) config.get("connection_pool.maximum_pool_size")); hikariConfig.setMinimumIdle((Integer) config.get("connection_pool.minimum_idle")); hikariConfig.setConnectionTimeout((Long) config.get("connection_pool.connection_timeout")); hikariConfig.setIdleTimeout((Long) config.get("connection_pool.idle_timeout")); hikariConfig.setMaxLifetime((Long) config.get("connection_pool.max_lifetime")); hikariConfig.setLeakDetectionThreshold((Long) config.get("connection_pool.leak_detection_threshold")); // Apply optimization properties Map<String, Object> poolOpts = (Map<String, Object>) config.get("pool_optimization"); for (Map.Entry<String, Object> entry : poolOpts.entrySet()) { hikariConfig.addDataSourceProperty(entry.getKey(), entry.getValue()); } HikariDataSource dataSource = new HikariDataSource(hikariConfig); // Create TuskLang instance with optimized pool TuskLang tusk = new TuskLang(); tusk.setDataSource(dataSource); } }

3. Query Caching Strategies

import org.tusklang.java.TuskLang;
import org.tusklang.java.cache.TuskQueryCache;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import java.util.Map;

@EnableCaching public class QueryCacheExample { public static void main(String[] args) { TuskLang parser = new TuskLang(); String tskContent = """ [query_cache] # Multi-level caching strategy enable_l1_cache: true enable_l2_cache: true enable_redis_cache: true [cache_config] # L1 Cache (In-Memory) l1_max_size: 1000 l1_ttl: "10m" l1_eviction_policy: "LRU" # L2 Cache (Redis) redis_host: "localhost" redis_port: 6379 redis_ttl: "1h" redis_max_connections: 50 [cached_queries] # Define cached queries user_profile: @query.cached(""" SELECT * FROM users WHERE id = ? """, "user_profile_cache", "30m") user_permissions: @query.cached(""" SELECT p.* FROM permissions p JOIN user_permissions up ON p.id = up.permission_id WHERE up.user_id = ? """, "user_permissions_cache", "1h") system_stats: @query.cached(""" SELECT COUNT(*) as total_users, COUNT(CASE WHEN active = 1 THEN 1 END) as active_users, SUM(CASE WHEN premium = 1 THEN 1 ELSE 0 END) as premium_users FROM users """, "system_stats_cache", "5m") """; Map<String, Object> config = parser.parse(tskContent); // Initialize query cache TuskQueryCache queryCache = new TuskQueryCache(); queryCache.configure(config); // Use cached queries Map<String, Object> userProfile = queryCache.getCachedQuery("user_profile", 123); Map<String, Object> permissions = queryCache.getCachedQuery("user_permissions", 123); Map<String, Object> stats = queryCache.getCachedQuery("system_stats"); } }

4. Batch Processing Optimization

import org.tusklang.java.TuskLang;
import org.tusklang.java.batch.TuskBatchProcessor;
import java.util.List;
import java.util.Map;

public class BatchProcessingExample { public static void main(String[] args) { TuskLang parser = new TuskLang(); String tskContent = """ [batch_processing] # Batch optimization settings batch_size: 1000 batch_timeout: "30s" enable_parallel_processing: true max_parallel_threads: 4 [batch_queries] # Optimized batch operations bulk_user_insert: @query.batch(""" INSERT INTO users (name, email, created_at) VALUES (?, ?, ?) """, "batch_size") .batch_size(1000) .timeout("30s") .parallel(true) bulk_order_update: @query.batch(""" UPDATE orders SET status = ?, updated_at = ? WHERE id = ? """, "batch_size") .batch_size(500) .timeout("15s") .parallel(true) bulk_data_cleanup: @query.batch(""" DELETE FROM old_logs WHERE created_at < ? """, "batch_size") .batch_size(2000) .timeout("60s") .parallel(false) """; Map<String, Object> config = parser.parse(tskContent); // Initialize batch processor TuskBatchProcessor batchProcessor = new TuskBatchProcessor(); batchProcessor.configure(config); // Prepare batch data List<Object[]> userData = prepareUserData(); List<Object[]> orderData = prepareOrderData(); // Execute batch operations batchProcessor.executeBatch("bulk_user_insert", userData); batchProcessor.executeBatch("bulk_order_update", orderData); batchProcessor.executeBatch("bulk_data_cleanup", List.of(new Object[]{getOldDate()})); } private static List<Object[]> prepareUserData() { // Prepare user data for batch insert return List.of( new Object[]{"John Doe", "john@example.com", new java.util.Date()}, new Object[]{"Jane Smith", "jane@example.com", new java.util.Date()} // ... more data ); } private static List<Object[]> prepareOrderData() { // Prepare order data for batch update return List.of( new Object[]{"completed", new java.util.Date(), 1}, new Object[]{"shipped", new java.util.Date(), 2} // ... more data ); } private static java.util.Date getOldDate() { return new java.util.Date(System.currentTimeMillis() - 30L 24 60 60 1000); // 30 days ago } }

🚀 Advanced Optimization Techniques

1. Query Plan Analysis

import org.tusklang.java.TuskLang;
import org.tusklang.java.analysis.TuskQueryAnalyzer;
import java.util.Map;

public class QueryAnalysisExample { public static void main(String[] args) { TuskLang parser = new TuskLang(); String tskContent = """ [query_analysis] # Enable query plan analysis enable_explain_analyze: true log_slow_queries: true slow_query_threshold: "1s" enable_query_metrics: true [analysis_queries] # Queries to analyze complex_user_query: @query.analyze(""" SELECT u.name, COUNT(o.id) as order_count, SUM(o.total) as total_spent FROM users u LEFT JOIN orders o ON u.id = o.user_id WHERE u.created_at > ? GROUP BY u.id, u.name HAVING COUNT(o.id) > 5 ORDER BY total_spent DESC LIMIT 100 """, @date.subtract("90d")) .explain(true) .analyze(true) .log_plan(true) """; Map<String, Object> config = parser.parse(tskContent); // Initialize query analyzer TuskQueryAnalyzer analyzer = new TuskQueryAnalyzer(); analyzer.configure(config); // Analyze query performance Map<String, Object> analysis = analyzer.analyzeQuery("complex_user_query"); System.out.println("Query Plan: " + analysis.get("plan")); System.out.println("Execution Time: " + analysis.get("execution_time")); System.out.println("Rows Affected: " + analysis.get("rows_affected")); System.out.println("Optimization Suggestions: " + analysis.get("suggestions")); } }

2. Index Optimization

import org.tusklang.java.TuskLang;
import org.tusklang.java.index.TuskIndexOptimizer;
import java.util.Map;

public class IndexOptimizationExample { public static void main(String[] args) { TuskLang parser = new TuskLang(); String tskContent = """ [index_optimization] # Index analysis and optimization enable_index_analysis: true suggest_indexes: true auto_create_indexes: false [index_suggestions] # Suggested indexes for optimization users_email_idx: @index.suggest("users", ["email"], "UNIQUE") users_created_at_idx: @index.suggest("users", ["created_at"], "BTREE") orders_user_date_idx: @index.suggest("orders", ["user_id", "created_at"], "BTREE") orders_status_idx: @index.suggest("orders", ["status", "created_at"], "BTREE") [index_analysis] # Analyze existing indexes analyze_users_table: @index.analyze("users") analyze_orders_table: @index.analyze("orders") analyze_performance: @index.performance("users", "orders") """; Map<String, Object> config = parser.parse(tskContent); // Initialize index optimizer TuskIndexOptimizer indexOptimizer = new TuskIndexOptimizer(); indexOptimizer.configure(config); // Analyze and suggest indexes Map<String, Object> suggestions = indexOptimizer.analyzeIndexes(); Map<String, Object> performance = indexOptimizer.analyzePerformance(); System.out.println("Index Suggestions: " + suggestions); System.out.println("Performance Analysis: " + performance); } }

🔧 Performance Monitoring

1. Query Metrics Collection

import org.tusklang.java.TuskLang;
import org.tusklang.java.metrics.TuskQueryMetrics;
import java.util.Map;

public class MetricsExample { public static void main(String[] args) { TuskLang parser = new TuskLang(); String tskContent = """ [query_metrics] # Enable comprehensive metrics enable_metrics: true metrics_interval: "1m" enable_slow_query_log: true slow_query_threshold: "500ms" [metrics_collection] # What to collect collect_execution_time: true collect_row_counts: true collect_cache_hits: true collect_connection_usage: true collect_memory_usage: true [metrics_export] # Export metrics export_to_prometheus: true export_to_grafana: true export_to_logs: true """; Map<String, Object> config = parser.parse(tskContent); // Initialize metrics collector TuskQueryMetrics metrics = new TuskQueryMetrics(); metrics.configure(config); // Start metrics collection metrics.startCollection(); // Execute queries (metrics automatically collected) TuskLang tusk = new TuskLang(); tusk.setMetricsCollector(metrics); // Get metrics summary Map<String, Object> summary = metrics.getSummary(); System.out.println("Query Performance Summary: " + summary); } }

🎯 Best Practices

1. Query Optimization Checklist

// ✅ Use parameterized queries
String query = "SELECT * FROM users WHERE email = ? AND active = ?";

// ✅ Enable query caching for frequently accessed data @Query.cached("user_profile", "30m")

// ✅ Use appropriate batch sizes .batch_size(1000)

// ✅ Enable connection pooling HikariCP with optimized settings

// ✅ Use indexes effectively CREATE INDEX idx_users_email ON users(email);

// ✅ Monitor query performance Enable metrics and slow query logging

// ✅ Use prepared statements Always use parameterized queries

// ✅ Optimize JOIN operations Use appropriate JOIN types and order

2. Performance Tuning Guidelines

// 1. Connection Pool Optimization
- Set appropriate pool size based on workload
- Monitor connection usage patterns
- Use connection validation

// 2. Query Caching Strategy - Cache frequently accessed data - Use appropriate TTL values - Implement cache invalidation

// 3. Batch Processing - Use appropriate batch sizes - Enable parallel processing when safe - Monitor memory usage

// 4. Index Management - Create indexes based on query patterns - Monitor index usage - Remove unused indexes

// 5. Query Analysis - Regularly analyze slow queries - Use EXPLAIN ANALYZE - Monitor query patterns

🚀 Integration with Spring Boot

1. Spring Boot Configuration

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.tusklang.java.TuskLang;
import org.tusklang.java.spring.TuskSpringConfig;

@SpringBootApplication @Configuration public class OptimizedApplication { @Bean public TuskSpringConfig tuskSpringConfig() { TuskLang parser = new TuskLang(); return parser.parseFile("optimization.tsk", TuskSpringConfig.class); } public static void main(String[] args) { SpringApplication.run(OptimizedApplication.class, args); } }

@TuskConfig public class TuskSpringConfig { private DatabaseConfig database; private CacheConfig cache; private MetricsConfig metrics; // Getters and setters public DatabaseConfig getDatabase() { return database; } public void setDatabase(DatabaseConfig database) { this.database = database; } public CacheConfig getCache() { return cache; } public void setCache(CacheConfig cache) { this.cache = cache; } public MetricsConfig getMetrics() { return metrics; } public void setMetrics(MetricsConfig metrics) { this.metrics = metrics; } }

🎯 Summary

TuskLang Java query optimization provides:

- JPA Integration: Seamless integration with JPA/Hibernate - Connection Pooling: Optimized connection management with HikariCP - Query Caching: Multi-level caching strategies - Batch Processing: Efficient bulk operations - Performance Monitoring: Comprehensive metrics collection - Index Optimization: Intelligent index suggestions - Spring Boot Integration: Native Spring Boot support

With these optimization features, your Java applications will achieve enterprise-grade performance while maintaining the flexibility and power of TuskLang configuration.

"We don't bow to any king" - Optimize like a Java master with TuskLang!