☕ 🚀 Query Optimization in TuskLang Java
🚀 Query Optimization in TuskLang Java
"We don't bow to any king" - Optimize like a Java master
TuskLang Java provides enterprise-grade query optimization with JPA integration, connection pooling, and intelligent caching strategies that make your database operations fly.
🎯 Overview
Query optimization in TuskLang Java combines the power of modern Java database technologies with TuskLang's intelligent configuration system. From JPA query optimization to connection pooling and caching strategies, we'll show you how to squeeze every drop of performance from your database operations.
🔧 Core Optimization Features
1. JPA Query Optimization
import org.tusklang.java.TuskLang;
import org.tusklang.java.jpa.TuskJPAOptimizer;
import javax.persistence.EntityManager;
import java.util.Map;public class JPAOptimizationExample {
public static void main(String[] args) {
TuskLang parser = new TuskLang();
TuskJPAOptimizer optimizer = new TuskJPAOptimizer();
// Optimized TSK configuration
String tskContent = """
[database]
# Enable query optimization
optimize_queries: true
enable_query_cache: true
batch_size: 100
[jpa]
# JPA-specific optimizations
enable_second_level_cache: true
enable_query_cache: true
batch_fetch_size: 50
default_batch_fetch_size: 16
[queries]
# Pre-optimized queries with hints
user_stats: @query.optimized("""
SELECT
COUNT(*) as total_users,
COUNT(CASE WHEN active = 1 THEN 1 END) as active_users,
AVG(age) as avg_age
FROM users
WHERE created_at > ?
""", @date.subtract("30d"))
.hint("org.hibernate.comment", "User statistics query")
.hint("org.hibernate.fetchSize", 100)
.cache("5m")
recent_orders: @query.optimized("""
SELECT o.*, u.name as user_name
FROM orders o
JOIN users u ON o.user_id = u.id
WHERE o.created_at > ?
ORDER BY o.created_at DESC
LIMIT 50
""", @date.subtract("7d"))
.hint("org.hibernate.comment", "Recent orders with user info")
.hint("org.hibernate.fetchSize", 50)
.cache("2m")
""";
Map<String, Object> config = parser.parse(tskContent);
// Apply optimizations to EntityManager
EntityManager em = getEntityManager();
optimizer.applyOptimizations(em, config);
}
}
2. Connection Pooling Optimization
import org.tusklang.java.TuskLang;
import org.tusklang.java.pool.TuskConnectionPool;
import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import java.util.Map;public class ConnectionPoolExample {
public static void main(String[] args) {
TuskLang parser = new TuskLang();
String tskContent = """
[connection_pool]
# HikariCP optimization
pool_name: "TuskPool"
maximum_pool_size: 20
minimum_idle: 5
connection_timeout: 30000
idle_timeout: 600000
max_lifetime: 1800000
leak_detection_threshold: 60000
[pool_optimization]
# Performance tuning
cache_prep_stmts: true
prep_stmt_cache_size: 250
prep_stmt_cache_sql_limit: 2048
use_server_prep_stmts: true
use_local_session_state: true
rewrite_batched_statements: true
cache_result_set_metadata: true
cache_server_configuration: true
elide_set_auto_commits: true
maintain_time_stats: false
[monitoring]
# Pool monitoring
enable_metrics: true
enable_jmx: true
register_mbeans: true
""";
Map<String, Object> config = parser.parse(tskContent);
// Create optimized connection pool
HikariConfig hikariConfig = new HikariConfig();
hikariConfig.setPoolName((String) config.get("connection_pool.pool_name"));
hikariConfig.setMaximumPoolSize((Integer) config.get("connection_pool.maximum_pool_size"));
hikariConfig.setMinimumIdle((Integer) config.get("connection_pool.minimum_idle"));
hikariConfig.setConnectionTimeout((Long) config.get("connection_pool.connection_timeout"));
hikariConfig.setIdleTimeout((Long) config.get("connection_pool.idle_timeout"));
hikariConfig.setMaxLifetime((Long) config.get("connection_pool.max_lifetime"));
hikariConfig.setLeakDetectionThreshold((Long) config.get("connection_pool.leak_detection_threshold"));
// Apply optimization properties
Map<String, Object> poolOpts = (Map<String, Object>) config.get("pool_optimization");
for (Map.Entry<String, Object> entry : poolOpts.entrySet()) {
hikariConfig.addDataSourceProperty(entry.getKey(), entry.getValue());
}
HikariDataSource dataSource = new HikariDataSource(hikariConfig);
// Create TuskLang instance with optimized pool
TuskLang tusk = new TuskLang();
tusk.setDataSource(dataSource);
}
}
3. Query Caching Strategies
import org.tusklang.java.TuskLang;
import org.tusklang.java.cache.TuskQueryCache;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import java.util.Map;@EnableCaching
public class QueryCacheExample {
public static void main(String[] args) {
TuskLang parser = new TuskLang();
String tskContent = """
[query_cache]
# Multi-level caching strategy
enable_l1_cache: true
enable_l2_cache: true
enable_redis_cache: true
[cache_config]
# L1 Cache (In-Memory)
l1_max_size: 1000
l1_ttl: "10m"
l1_eviction_policy: "LRU"
# L2 Cache (Redis)
redis_host: "localhost"
redis_port: 6379
redis_ttl: "1h"
redis_max_connections: 50
[cached_queries]
# Define cached queries
user_profile: @query.cached("""
SELECT * FROM users WHERE id = ?
""", "user_profile_cache", "30m")
user_permissions: @query.cached("""
SELECT p.* FROM permissions p
JOIN user_permissions up ON p.id = up.permission_id
WHERE up.user_id = ?
""", "user_permissions_cache", "1h")
system_stats: @query.cached("""
SELECT
COUNT(*) as total_users,
COUNT(CASE WHEN active = 1 THEN 1 END) as active_users,
SUM(CASE WHEN premium = 1 THEN 1 ELSE 0 END) as premium_users
FROM users
""", "system_stats_cache", "5m")
""";
Map<String, Object> config = parser.parse(tskContent);
// Initialize query cache
TuskQueryCache queryCache = new TuskQueryCache();
queryCache.configure(config);
// Use cached queries
Map<String, Object> userProfile = queryCache.getCachedQuery("user_profile", 123);
Map<String, Object> permissions = queryCache.getCachedQuery("user_permissions", 123);
Map<String, Object> stats = queryCache.getCachedQuery("system_stats");
}
}
4. Batch Processing Optimization
import org.tusklang.java.TuskLang;
import org.tusklang.java.batch.TuskBatchProcessor;
import java.util.List;
import java.util.Map;public class BatchProcessingExample {
public static void main(String[] args) {
TuskLang parser = new TuskLang();
String tskContent = """
[batch_processing]
# Batch optimization settings
batch_size: 1000
batch_timeout: "30s"
enable_parallel_processing: true
max_parallel_threads: 4
[batch_queries]
# Optimized batch operations
bulk_user_insert: @query.batch("""
INSERT INTO users (name, email, created_at)
VALUES (?, ?, ?)
""", "batch_size")
.batch_size(1000)
.timeout("30s")
.parallel(true)
bulk_order_update: @query.batch("""
UPDATE orders
SET status = ?, updated_at = ?
WHERE id = ?
""", "batch_size")
.batch_size(500)
.timeout("15s")
.parallel(true)
bulk_data_cleanup: @query.batch("""
DELETE FROM old_logs
WHERE created_at < ?
""", "batch_size")
.batch_size(2000)
.timeout("60s")
.parallel(false)
""";
Map<String, Object> config = parser.parse(tskContent);
// Initialize batch processor
TuskBatchProcessor batchProcessor = new TuskBatchProcessor();
batchProcessor.configure(config);
// Prepare batch data
List<Object[]> userData = prepareUserData();
List<Object[]> orderData = prepareOrderData();
// Execute batch operations
batchProcessor.executeBatch("bulk_user_insert", userData);
batchProcessor.executeBatch("bulk_order_update", orderData);
batchProcessor.executeBatch("bulk_data_cleanup", List.of(new Object[]{getOldDate()}));
}
private static List<Object[]> prepareUserData() {
// Prepare user data for batch insert
return List.of(
new Object[]{"John Doe", "john@example.com", new java.util.Date()},
new Object[]{"Jane Smith", "jane@example.com", new java.util.Date()}
// ... more data
);
}
private static List<Object[]> prepareOrderData() {
// Prepare order data for batch update
return List.of(
new Object[]{"completed", new java.util.Date(), 1},
new Object[]{"shipped", new java.util.Date(), 2}
// ... more data
);
}
private static java.util.Date getOldDate() {
return new java.util.Date(System.currentTimeMillis() - 30L 24 60 60 1000); // 30 days ago
}
}
🚀 Advanced Optimization Techniques
1. Query Plan Analysis
import org.tusklang.java.TuskLang;
import org.tusklang.java.analysis.TuskQueryAnalyzer;
import java.util.Map;public class QueryAnalysisExample {
public static void main(String[] args) {
TuskLang parser = new TuskLang();
String tskContent = """
[query_analysis]
# Enable query plan analysis
enable_explain_analyze: true
log_slow_queries: true
slow_query_threshold: "1s"
enable_query_metrics: true
[analysis_queries]
# Queries to analyze
complex_user_query: @query.analyze("""
SELECT
u.name,
COUNT(o.id) as order_count,
SUM(o.total) as total_spent
FROM users u
LEFT JOIN orders o ON u.id = o.user_id
WHERE u.created_at > ?
GROUP BY u.id, u.name
HAVING COUNT(o.id) > 5
ORDER BY total_spent DESC
LIMIT 100
""", @date.subtract("90d"))
.explain(true)
.analyze(true)
.log_plan(true)
""";
Map<String, Object> config = parser.parse(tskContent);
// Initialize query analyzer
TuskQueryAnalyzer analyzer = new TuskQueryAnalyzer();
analyzer.configure(config);
// Analyze query performance
Map<String, Object> analysis = analyzer.analyzeQuery("complex_user_query");
System.out.println("Query Plan: " + analysis.get("plan"));
System.out.println("Execution Time: " + analysis.get("execution_time"));
System.out.println("Rows Affected: " + analysis.get("rows_affected"));
System.out.println("Optimization Suggestions: " + analysis.get("suggestions"));
}
}
2. Index Optimization
import org.tusklang.java.TuskLang;
import org.tusklang.java.index.TuskIndexOptimizer;
import java.util.Map;public class IndexOptimizationExample {
public static void main(String[] args) {
TuskLang parser = new TuskLang();
String tskContent = """
[index_optimization]
# Index analysis and optimization
enable_index_analysis: true
suggest_indexes: true
auto_create_indexes: false
[index_suggestions]
# Suggested indexes for optimization
users_email_idx: @index.suggest("users", ["email"], "UNIQUE")
users_created_at_idx: @index.suggest("users", ["created_at"], "BTREE")
orders_user_date_idx: @index.suggest("orders", ["user_id", "created_at"], "BTREE")
orders_status_idx: @index.suggest("orders", ["status", "created_at"], "BTREE")
[index_analysis]
# Analyze existing indexes
analyze_users_table: @index.analyze("users")
analyze_orders_table: @index.analyze("orders")
analyze_performance: @index.performance("users", "orders")
""";
Map<String, Object> config = parser.parse(tskContent);
// Initialize index optimizer
TuskIndexOptimizer indexOptimizer = new TuskIndexOptimizer();
indexOptimizer.configure(config);
// Analyze and suggest indexes
Map<String, Object> suggestions = indexOptimizer.analyzeIndexes();
Map<String, Object> performance = indexOptimizer.analyzePerformance();
System.out.println("Index Suggestions: " + suggestions);
System.out.println("Performance Analysis: " + performance);
}
}
🔧 Performance Monitoring
1. Query Metrics Collection
import org.tusklang.java.TuskLang;
import org.tusklang.java.metrics.TuskQueryMetrics;
import java.util.Map;public class MetricsExample {
public static void main(String[] args) {
TuskLang parser = new TuskLang();
String tskContent = """
[query_metrics]
# Enable comprehensive metrics
enable_metrics: true
metrics_interval: "1m"
enable_slow_query_log: true
slow_query_threshold: "500ms"
[metrics_collection]
# What to collect
collect_execution_time: true
collect_row_counts: true
collect_cache_hits: true
collect_connection_usage: true
collect_memory_usage: true
[metrics_export]
# Export metrics
export_to_prometheus: true
export_to_grafana: true
export_to_logs: true
""";
Map<String, Object> config = parser.parse(tskContent);
// Initialize metrics collector
TuskQueryMetrics metrics = new TuskQueryMetrics();
metrics.configure(config);
// Start metrics collection
metrics.startCollection();
// Execute queries (metrics automatically collected)
TuskLang tusk = new TuskLang();
tusk.setMetricsCollector(metrics);
// Get metrics summary
Map<String, Object> summary = metrics.getSummary();
System.out.println("Query Performance Summary: " + summary);
}
}
🎯 Best Practices
1. Query Optimization Checklist
// ✅ Use parameterized queries
String query = "SELECT * FROM users WHERE email = ? AND active = ?";// ✅ Enable query caching for frequently accessed data
@Query.cached("user_profile", "30m")
// ✅ Use appropriate batch sizes
.batch_size(1000)
// ✅ Enable connection pooling
HikariCP with optimized settings
// ✅ Use indexes effectively
CREATE INDEX idx_users_email ON users(email);
// ✅ Monitor query performance
Enable metrics and slow query logging
// ✅ Use prepared statements
Always use parameterized queries
// ✅ Optimize JOIN operations
Use appropriate JOIN types and order
2. Performance Tuning Guidelines
// 1. Connection Pool Optimization
- Set appropriate pool size based on workload
- Monitor connection usage patterns
- Use connection validation// 2. Query Caching Strategy
- Cache frequently accessed data
- Use appropriate TTL values
- Implement cache invalidation
// 3. Batch Processing
- Use appropriate batch sizes
- Enable parallel processing when safe
- Monitor memory usage
// 4. Index Management
- Create indexes based on query patterns
- Monitor index usage
- Remove unused indexes
// 5. Query Analysis
- Regularly analyze slow queries
- Use EXPLAIN ANALYZE
- Monitor query patterns
🚀 Integration with Spring Boot
1. Spring Boot Configuration
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.tusklang.java.TuskLang;
import org.tusklang.java.spring.TuskSpringConfig;@SpringBootApplication
@Configuration
public class OptimizedApplication {
@Bean
public TuskSpringConfig tuskSpringConfig() {
TuskLang parser = new TuskLang();
return parser.parseFile("optimization.tsk", TuskSpringConfig.class);
}
public static void main(String[] args) {
SpringApplication.run(OptimizedApplication.class, args);
}
}
@TuskConfig
public class TuskSpringConfig {
private DatabaseConfig database;
private CacheConfig cache;
private MetricsConfig metrics;
// Getters and setters
public DatabaseConfig getDatabase() { return database; }
public void setDatabase(DatabaseConfig database) { this.database = database; }
public CacheConfig getCache() { return cache; }
public void setCache(CacheConfig cache) { this.cache = cache; }
public MetricsConfig getMetrics() { return metrics; }
public void setMetrics(MetricsConfig metrics) { this.metrics = metrics; }
}
🎯 Summary
TuskLang Java query optimization provides:
- JPA Integration: Seamless integration with JPA/Hibernate - Connection Pooling: Optimized connection management with HikariCP - Query Caching: Multi-level caching strategies - Batch Processing: Efficient bulk operations - Performance Monitoring: Comprehensive metrics collection - Index Optimization: Intelligent index suggestions - Spring Boot Integration: Native Spring Boot support
With these optimization features, your Java applications will achieve enterprise-grade performance while maintaining the flexibility and power of TuskLang configuration.
"We don't bow to any king" - Optimize like a Java master with TuskLang!