☕ 🤖 AI/ML Patterns with TuskLang Java
🤖 AI/ML Patterns with TuskLang Java
"We don't bow to any king" - AI Edition
TuskLang Java enables sophisticated AI/ML applications with built-in support for machine learning models, neural networks, data preprocessing, and intelligent decision-making. Build intelligent applications that learn, adapt, and make predictions.
🎯 AI/ML Architecture Overview
Machine Learning Configuration
import org.tusklang.java.TuskLang;
import org.tusklang.java.config.TuskConfig;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;@SpringBootApplication
public class AIMLApplication {
@Bean
public TuskConfig tuskConfig() {
TuskLang parser = new TuskLang();
return parser.parseFile("ai-ml.tsk", TuskConfig.class);
}
public static void main(String[] args) {
SpringApplication.run(AIMLApplication.class, args);
}
}
// AI/ML configuration
@TuskConfig
public class AIMLConfig {
private String applicationName;
private String version;
private ModelConfig model;
private DataConfig data;
private TrainingConfig training;
private InferenceConfig inference;
private MonitoringConfig monitoring;
// Getters and setters
public String getApplicationName() { return applicationName; }
public void setApplicationName(String applicationName) { this.applicationName = applicationName; }
public String getVersion() { return version; }
public void setVersion(String version) { this.version = version; }
public ModelConfig getModel() { return model; }
public void setModel(ModelConfig model) { this.model = model; }
public DataConfig getData() { return data; }
public void setData(DataConfig data) { this.data = data; }
public TrainingConfig getTraining() { return training; }
public void setTraining(TrainingConfig training) { this.training = training; }
public InferenceConfig getInference() { return inference; }
public void setInference(InferenceConfig inference) { this.inference = inference; }
public MonitoringConfig getMonitoring() { return monitoring; }
public void setMonitoring(MonitoringConfig monitoring) { this.monitoring = monitoring; }
}
@TuskConfig
public class ModelConfig {
private String type;
private String framework;
private String modelPath;
private String modelVersion;
private HyperparametersConfig hyperparameters;
private ArchitectureConfig architecture;
// Getters and setters
public String getType() { return type; }
public void setType(String type) { this.type = type; }
public String getFramework() { return framework; }
public void setFramework(String framework) { this.framework = framework; }
public String getModelPath() { return modelPath; }
public void setModelPath(String modelPath) { this.modelPath = modelPath; }
public String getModelVersion() { return modelVersion; }
public void setModelVersion(String modelVersion) { this.modelVersion = modelVersion; }
public HyperparametersConfig getHyperparameters() { return hyperparameters; }
public void setHyperparameters(HyperparametersConfig hyperparameters) { this.hyperparameters = hyperparameters; }
public ArchitectureConfig getArchitecture() { return architecture; }
public void setArchitecture(ArchitectureConfig architecture) { this.architecture = architecture; }
}
@TuskConfig
public class HyperparametersConfig {
private double learningRate;
private int batchSize;
private int epochs;
private double dropoutRate;
private String optimizer;
private String lossFunction;
private Map<String, Object> customParams;
// Getters and setters
public double getLearningRate() { return learningRate; }
public void setLearningRate(double learningRate) { this.learningRate = learningRate; }
public int getBatchSize() { return batchSize; }
public void setBatchSize(int batchSize) { this.batchSize = batchSize; }
public int getEpochs() { return epochs; }
public void setEpochs(int epochs) { this.epochs = epochs; }
public double getDropoutRate() { return dropoutRate; }
public void setDropoutRate(double dropoutRate) { this.dropoutRate = dropoutRate; }
public String getOptimizer() { return optimizer; }
public void setOptimizer(String optimizer) { this.optimizer = optimizer; }
public String getLossFunction() { return lossFunction; }
public void setLossFunction(String lossFunction) { this.lossFunction = lossFunction; }
public Map<String, Object> getCustomParams() { return customParams; }
public void setCustomParams(Map<String, Object> customParams) { this.customParams = customParams; }
}
@TuskConfig
public class ArchitectureConfig {
private List<Integer> layers;
private List<String> activations;
private String inputShape;
private String outputShape;
private boolean batchNormalization;
private boolean regularization;
// Getters and setters
public List<Integer> getLayers() { return layers; }
public void setLayers(List<Integer> layers) { this.layers = layers; }
public List<String> getActivations() { return activations; }
public void setActivations(List<String> activations) { this.activations = activations; }
public String getInputShape() { return inputShape; }
public void setInputShape(String inputShape) { this.inputShape = inputShape; }
public String getOutputShape() { return outputShape; }
public void setOutputShape(String outputShape) { this.outputShape = outputShape; }
public boolean isBatchNormalization() { return batchNormalization; }
public void setBatchNormalization(boolean batchNormalization) { this.batchNormalization = batchNormalization; }
public boolean isRegularization() { return regularization; }
public void setRegularization(boolean regularization) { this.regularization = regularization; }
}
@TuskConfig
public class DataConfig {
private String source;
private String format;
private PreprocessingConfig preprocessing;
private AugmentationConfig augmentation;
private ValidationConfig validation;
// Getters and setters
public String getSource() { return source; }
public void setSource(String source) { this.source = source; }
public String getFormat() { return format; }
public void setFormat(String format) { this.format = format; }
public PreprocessingConfig getPreprocessing() { return preprocessing; }
public void setPreprocessing(PreprocessingConfig preprocessing) { this.preprocessing = preprocessing; }
public AugmentationConfig getAugmentation() { return augmentation; }
public void setAugmentation(AugmentationConfig augmentation) { this.augmentation = augmentation; }
public ValidationConfig getValidation() { return validation; }
public void setValidation(ValidationConfig validation) { this.validation = validation; }
}
@TuskConfig
public class PreprocessingConfig {
private boolean normalization;
private boolean standardization;
private boolean scaling;
private String scalingMethod;
private boolean featureSelection;
private List<String> selectedFeatures;
private boolean outlierRemoval;
// Getters and setters
public boolean isNormalization() { return normalization; }
public void setNormalization(boolean normalization) { this.normalization = normalization; }
public boolean isStandardization() { return standardization; }
public void setStandardization(boolean standardization) { this.standardization = standardization; }
public boolean isScaling() { return scaling; }
public void setScaling(boolean scaling) { this.scaling = scaling; }
public String getScalingMethod() { return scalingMethod; }
public void setScalingMethod(String scalingMethod) { this.scalingMethod = scalingMethod; }
public boolean isFeatureSelection() { return featureSelection; }
public void setFeatureSelection(boolean featureSelection) { this.featureSelection = featureSelection; }
public List<String> getSelectedFeatures() { return selectedFeatures; }
public void setSelectedFeatures(List<String> selectedFeatures) { this.selectedFeatures = selectedFeatures; }
public boolean isOutlierRemoval() { return outlierRemoval; }
public void setOutlierRemoval(boolean outlierRemoval) { this.outlierRemoval = outlierRemoval; }
}
@TuskConfig
public class AugmentationConfig {
private boolean enabled;
private double rotationRange;
private double widthShiftRange;
private double heightShiftRange;
private double zoomRange;
private double horizontalFlip;
private double verticalFlip;
// Getters and setters
public boolean isEnabled() { return enabled; }
public void setEnabled(boolean enabled) { this.enabled = enabled; }
public double getRotationRange() { return rotationRange; }
public void setRotationRange(double rotationRange) { this.rotationRange = rotationRange; }
public double getWidthShiftRange() { return widthShiftRange; }
public void setWidthShiftRange(double widthShiftRange) { this.widthShiftRange = widthShiftRange; }
public double getHeightShiftRange() { return heightShiftRange; }
public void setHeightShiftRange(double heightShiftRange) { this.heightShiftRange = heightShiftRange; }
public double getZoomRange() { return zoomRange; }
public void setZoomRange(double zoomRange) { this.zoomRange = zoomRange; }
public double getHorizontalFlip() { return horizontalFlip; }
public void setHorizontalFlip(double horizontalFlip) { this.horizontalFlip = horizontalFlip; }
public double getVerticalFlip() { return verticalFlip; }
public void setVerticalFlip(double verticalFlip) { this.verticalFlip = verticalFlip; }
}
@TuskConfig
public class ValidationConfig {
private double testSize;
private double validationSize;
private String splitMethod;
private int crossValidationFolds;
private boolean stratified;
// Getters and setters
public double getTestSize() { return testSize; }
public void setTestSize(double testSize) { this.testSize = testSize; }
public double getValidationSize() { return validationSize; }
public void setValidationSize(double validationSize) { this.validationSize = validationSize; }
public String getSplitMethod() { return splitMethod; }
public void setSplitMethod(String splitMethod) { this.splitMethod = splitMethod; }
public int getCrossValidationFolds() { return crossValidationFolds; }
public void setCrossValidationFolds(int crossValidationFolds) { this.crossValidationFolds = crossValidationFolds; }
public boolean isStratified() { return stratified; }
public void setStratified(boolean stratified) { this.stratified = stratified; }
}
@TuskConfig
public class TrainingConfig {
private boolean enabled;
private String mode;
private String gpuConfig;
private CheckpointConfig checkpoint;
private EarlyStoppingConfig earlyStopping;
private CallbackConfig callbacks;
// Getters and setters
public boolean isEnabled() { return enabled; }
public void setEnabled(boolean enabled) { this.enabled = enabled; }
public String getMode() { return mode; }
public void setMode(String mode) { this.mode = mode; }
public String getGpuConfig() { return gpuConfig; }
public void setGpuConfig(String gpuConfig) { this.gpuConfig = gpuConfig; }
public CheckpointConfig getCheckpoint() { return checkpoint; }
public void setCheckpoint(CheckpointConfig checkpoint) { this.checkpoint = checkpoint; }
public EarlyStoppingConfig getEarlyStopping() { return earlyStopping; }
public void setEarlyStopping(EarlyStoppingConfig earlyStopping) { this.earlyStopping = earlyStopping; }
public CallbackConfig getCallbacks() { return callbacks; }
public void setCallbacks(CallbackConfig callbacks) { this.callbacks = callbacks; }
}
@TuskConfig
public class CheckpointConfig {
private boolean enabled;
private String path;
private int saveFrequency;
private boolean saveBestOnly;
private String monitor;
// Getters and setters
public boolean isEnabled() { return enabled; }
public void setEnabled(boolean enabled) { this.enabled = enabled; }
public String getPath() { return path; }
public void setPath(String path) { this.path = path; }
public int getSaveFrequency() { return saveFrequency; }
public void setSaveFrequency(int saveFrequency) { this.saveFrequency = saveFrequency; }
public boolean isSaveBestOnly() { return saveBestOnly; }
public void setSaveBestOnly(boolean saveBestOnly) { this.saveBestOnly = saveBestOnly; }
public String getMonitor() { return monitor; }
public void setMonitor(String monitor) { this.monitor = monitor; }
}
@TuskConfig
public class EarlyStoppingConfig {
private boolean enabled;
private int patience;
private double minDelta;
private String monitor;
private String mode;
// Getters and setters
public boolean isEnabled() { return enabled; }
public void setEnabled(boolean enabled) { this.enabled = enabled; }
public int getPatience() { return patience; }
public void setPatience(int patience) { this.patience = patience; }
public double getMinDelta() { return minDelta; }
public void setMinDelta(double minDelta) { this.minDelta = minDelta; }
public String getMonitor() { return monitor; }
public void setMonitor(String monitor) { this.monitor = monitor; }
public String getMode() { return mode; }
public void setMode(String mode) { this.mode = mode; }
}
@TuskConfig
public class CallbackConfig {
private boolean tensorboard;
private boolean csvLogger;
private boolean reduceLROnPlateau;
private Map<String, Object> customCallbacks;
// Getters and setters
public boolean isTensorboard() { return tensorboard; }
public void setTensorboard(boolean tensorboard) { this.tensorboard = tensorboard; }
public boolean isCsvLogger() { return csvLogger; }
public void setCsvLogger(boolean csvLogger) { this.csvLogger = csvLogger; }
public boolean isReduceLROnPlateau() { return reduceLROnPlateau; }
public void setReduceLROnPlateau(boolean reduceLROnPlateau) { this.reduceLROnPlateau = reduceLROnPlateau; }
public Map<String, Object> getCustomCallbacks() { return customCallbacks; }
public void setCustomCallbacks(Map<String, Object> customCallbacks) { this.customCallbacks = customCallbacks; }
}
@TuskConfig
public class InferenceConfig {
private boolean enabled;
private String mode;
private int batchSize;
private boolean caching;
private String cachePath;
private PerformanceConfig performance;
// Getters and setters
public boolean isEnabled() { return enabled; }
public void setEnabled(boolean enabled) { this.enabled = enabled; }
public String getMode() { return mode; }
public void setMode(String mode) { this.mode = mode; }
public int getBatchSize() { return batchSize; }
public void setBatchSize(int batchSize) { this.batchSize = batchSize; }
public boolean isCaching() { return caching; }
public void setCaching(boolean caching) { this.caching = caching; }
public String getCachePath() { return cachePath; }
public void setCachePath(String cachePath) { this.cachePath = cachePath; }
public PerformanceConfig getPerformance() { return performance; }
public void setPerformance(PerformanceConfig performance) { this.performance = performance; }
}
@TuskConfig
public class PerformanceConfig {
private boolean optimization;
private String optimizationLevel;
private boolean quantization;
private String quantizationType;
private boolean pruning;
private double pruningRate;
// Getters and setters
public boolean isOptimization() { return optimization; }
public void setOptimization(boolean optimization) { this.optimization = optimization; }
public String getOptimizationLevel() { return optimizationLevel; }
public void setOptimizationLevel(String optimizationLevel) { this.optimizationLevel = optimizationLevel; }
public boolean isQuantization() { return quantization; }
public void setQuantization(boolean quantization) { this.quantization = quantization; }
public String getQuantizationType() { return quantizationType; }
public void setQuantizationType(String quantizationType) { this.quantizationType = quantizationType; }
public boolean isPruning() { return pruning; }
public void setPruning(boolean pruning) { this.pruning = pruning; }
public double getPruningRate() { return pruningRate; }
public void setPruningRate(double pruningRate) { this.pruningRate = pruningRate; }
}
@TuskConfig
public class MonitoringConfig {
private String prometheusEndpoint;
private boolean enabled;
private Map<String, String> labels;
private int scrapeInterval;
private AlertingConfig alerting;
// Getters and setters
public String getPrometheusEndpoint() { return prometheusEndpoint; }
public void setPrometheusEndpoint(String prometheusEndpoint) { this.prometheusEndpoint = prometheusEndpoint; }
public boolean isEnabled() { return enabled; }
public void setEnabled(boolean enabled) { this.enabled = enabled; }
public Map<String, String> getLabels() { return labels; }
public void setLabels(Map<String, String> labels) { this.labels = labels; }
public int getScrapeInterval() { return scrapeInterval; }
public void setScrapeInterval(int scrapeInterval) { this.scrapeInterval = scrapeInterval; }
public AlertingConfig getAlerting() { return alerting; }
public void setAlerting(AlertingConfig alerting) { this.alerting = alerting; }
}
@TuskConfig
public class AlertingConfig {
private String slackWebhook;
private String emailEndpoint;
private Map<String, AlertRule> rules;
// Getters and setters
public String getSlackWebhook() { return slackWebhook; }
public void setSlackWebhook(String slackWebhook) { this.slackWebhook = slackWebhook; }
public String getEmailEndpoint() { return emailEndpoint; }
public void setEmailEndpoint(String emailEndpoint) { this.emailEndpoint = emailEndpoint; }
public Map<String, AlertRule> getRules() { return rules; }
public void setRules(Map<String, AlertRule> rules) { this.rules = rules; }
}
@TuskConfig
public class AlertRule {
private String condition;
private String threshold;
private String duration;
private List<String> channels;
private String severity;
// Getters and setters
public String getCondition() { return condition; }
public void setCondition(String condition) { this.condition = condition; }
public String getThreshold() { return threshold; }
public void setThreshold(String threshold) { this.threshold = threshold; }
public String getDuration() { return duration; }
public void setDuration(String duration) { this.duration = duration; }
public List<String> getChannels() { return channels; }
public void setChannels(List<String> channels) { this.channels = channels; }
public String getSeverity() { return severity; }
public void setSeverity(String severity) { this.severity = severity; }
}
🏗️ AI/ML TuskLang Configuration
ai-ml.tsk
AI/ML Configuration
[application]
name: "user-prediction-service"
version: "2.1.0"
environment: @env("ENVIRONMENT", "production")[model]
type: "neural_network"
framework: "tensorflow"
model_path: @env("MODEL_PATH", "/models/user-prediction")
model_version: "2.1.0"
[hyperparameters]
learning_rate: @learn("optimal_learning_rate", "0.001")
batch_size: @learn("optimal_batch_size", "32")
epochs: @learn("optimal_epochs", "100")
dropout_rate: @learn("optimal_dropout_rate", "0.2")
optimizer: "adam"
loss_function: "binary_crossentropy"
custom_params {
"momentum": 0.9
"weight_decay": 0.0001
"epsilon": 1e-8
}
[architecture]
layers: [128, 64, 32, 16, 1]
activations: ["relu", "relu", "relu", "relu", "sigmoid"]
input_shape: "(10,)"
output_shape: "(1,)"
batch_normalization: true
regularization: true
[data]
source: @env("DATA_SOURCE", "postgresql://localhost:5432/user_data")
format: "csv"
[preprocessing]
normalization: true
standardization: false
scaling: true
scaling_method: "min_max"
feature_selection: true
selected_features: [
"age",
"income",
"education_level",
"location_score",
"activity_level",
"purchase_history",
"session_duration",
"click_rate",
"conversion_rate",
"loyalty_score"
]
outlier_removal: true
[augmentation]
enabled: true
rotation_range: 0.1
width_shift_range: 0.1
height_shift_range: 0.1
zoom_range: 0.1
horizontal_flip: 0.5
vertical_flip: 0.0
[validation]
test_size: 0.2
validation_size: 0.2
split_method: "random"
cross_validation_folds: 5
stratified: true
[training]
enabled: true
mode: "gpu"
gpu_config: @env("GPU_CONFIG", "0")
[checkpoint]
enabled: true
path: "/models/checkpoints"
save_frequency: 10
save_best_only: true
monitor: "val_loss"
[early_stopping]
enabled: true
patience: 15
min_delta: 0.001
monitor: "val_loss"
mode: "min"
[callbacks]
tensorboard: true
csv_logger: true
reduce_lr_on_plateau: true
custom_callbacks {
"custom_metric": "f1_score"
"custom_monitor": "val_f1"
}
[inference]
enabled: true
mode: "batch"
batch_size: 64
caching: true
cache_path: "/cache/predictions"
[performance]
optimization: true
optimization_level: "high"
quantization: true
quantization_type: "int8"
pruning: true
pruning_rate: 0.3
[monitoring]
prometheus_endpoint: "/actuator/prometheus"
enabled: true
labels {
service: "user-prediction-service"
version: "2.1.0"
environment: @env("ENVIRONMENT", "production")
}
scrape_interval: 15
[alerting]
slack_webhook: @env.secure("SLACK_WEBHOOK")
email_endpoint: @env("ALERT_EMAIL")
[rules]
model_drift {
condition: "prediction_drift > 0.1"
threshold: "10%"
duration: "1h"
channels: ["slack", "email"]
severity: "warning"
}
accuracy_drop {
condition: "model_accuracy < 0.85"
threshold: "85%"
duration: "30m"
channels: ["slack", "email"]
severity: "critical"
}
training_failure {
condition: "training_loss > 1.0"
threshold: "1.0"
duration: "10m"
channels: ["slack"]
severity: "warning"
}
Dynamic AI/ML configuration
[monitoring]
model_accuracy: @metrics("model_accuracy_percent", 0)
prediction_latency: @metrics("prediction_latency_ms", 0)
training_loss: @metrics("training_loss", 0)
validation_loss: @metrics("validation_loss", 0)
prediction_drift: @metrics("prediction_drift_score", 0)
data_quality_score: @metrics("data_quality_score", 0)
feature_importance: @metrics("feature_importance_score", 0)
model_version: @metrics("model_version", 0)
🔄 Neural Network Configuration
Deep Learning Setup
import org.tusklang.java.TuskLang;
import org.tusklang.java.config.TuskConfig;@TuskConfig
public class NeuralNetworkConfig {
private String type;
private List<LayerConfig> layers;
private OptimizerConfig optimizer;
private LossConfig loss;
private MetricsConfig metrics;
// Getters and setters
public String getType() { return type; }
public void setType(String type) { this.type = type; }
public List<LayerConfig> getLayers() { return layers; }
public void setLayers(List<LayerConfig> layers) { this.layers = layers; }
public OptimizerConfig getOptimizer() { return optimizer; }
public void setOptimizer(OptimizerConfig optimizer) { this.optimizer = optimizer; }
public LossConfig getLoss() { return loss; }
public void setLoss(LossConfig loss) { this.loss = loss; }
public MetricsConfig getMetrics() { return metrics; }
public void setMetrics(MetricsConfig metrics) { this.metrics = metrics; }
}
@TuskConfig
public class LayerConfig {
private String type;
private int units;
private String activation;
private boolean dropout;
private double dropoutRate;
private boolean batchNormalization;
// Getters and setters
public String getType() { return type; }
public void setType(String type) { this.type = type; }
public int getUnits() { return units; }
public void setUnits(int units) { this.units = units; }
public String getActivation() { return activation; }
public void setActivation(String activation) { this.activation = activation; }
public boolean isDropout() { return dropout; }
public void setDropout(boolean dropout) { this.dropout = dropout; }
public double getDropoutRate() { return dropoutRate; }
public void setDropoutRate(double dropoutRate) { this.dropoutRate = dropoutRate; }
public boolean isBatchNormalization() { return batchNormalization; }
public void setBatchNormalization(boolean batchNormalization) { this.batchNormalization = batchNormalization; }
}
@TuskConfig
public class OptimizerConfig {
private String type;
private double learningRate;
private double momentum;
private double weightDecay;
private double epsilon;
// Getters and setters
public String getType() { return type; }
public void setType(String type) { this.type = type; }
public double getLearningRate() { return learningRate; }
public void setLearningRate(double learningRate) { this.learningRate = learningRate; }
public double getMomentum() { return momentum; }
public void setMomentum(double momentum) { this.momentum = momentum; }
public double getWeightDecay() { return weightDecay; }
public void setWeightDecay(double weightDecay) { this.weightDecay = weightDecay; }
public double getEpsilon() { return epsilon; }
public void setEpsilon(double epsilon) { this.epsilon = epsilon; }
}
@TuskConfig
public class LossConfig {
private String type;
private Map<String, Object> parameters;
// Getters and setters
public String getType() { return type; }
public void setType(String type) { this.type = type; }
public Map<String, Object> getParameters() { return parameters; }
public void setParameters(Map<String, Object> parameters) { this.parameters = parameters; }
}
@TuskConfig
public class MetricsConfig {
private List<String> metrics;
private Map<String, Object> customMetrics;
// Getters and setters
public List<String> getMetrics() { return metrics; }
public void setMetrics(List<String> metrics) { this.metrics = metrics; }
public Map<String, Object> getCustomMetrics() { return customMetrics; }
public void setCustomMetrics(Map<String, Object> customMetrics) { this.customMetrics = customMetrics; }
}
neural-network.tsk
[neural_network]
type: "feedforward"[layers]
input_layer {
type: "dense"
units: 128
activation: "relu"
dropout: true
dropout_rate: 0.2
batch_normalization: true
}
hidden_layer_1 {
type: "dense"
units: 64
activation: "relu"
dropout: true
dropout_rate: 0.3
batch_normalization: true
}
hidden_layer_2 {
type: "dense"
units: 32
activation: "relu"
dropout: true
dropout_rate: 0.3
batch_normalization: true
}
hidden_layer_3 {
type: "dense"
units: 16
activation: "relu"
dropout: true
dropout_rate: 0.2
batch_normalization: true
}
output_layer {
type: "dense"
units: 1
activation: "sigmoid"
dropout: false
batch_normalization: false
}
[optimizer]
type: "adam"
learning_rate: @learn("optimal_learning_rate", "0.001")
momentum: 0.9
weight_decay: 0.0001
epsilon: 1e-8
[loss]
type: "binary_crossentropy"
parameters {
"from_logits": false
"label_smoothing": 0.0
}
[metrics]
metrics: [
"accuracy",
"precision",
"recall",
"f1_score",
"auc"
]
custom_metrics {
"custom_f1": "weighted_f1_score"
"custom_auc": "roc_auc_score"
}
Neural network monitoring
[monitoring]
layer_activations: @metrics("layer_activation_stats", 0)
gradient_norms: @metrics("gradient_norm_stats", 0)
weight_distributions: @metrics("weight_distribution_stats", 0)
🎯 Best Practices
1. Model Design
- Choose appropriate architecture - Use proper activation functions - Implement regularization - Monitor model complexity2. Data Management
- Ensure data quality - Implement proper preprocessing - Use data augmentation - Monitor data drift3. Training
- Use appropriate hyperparameters - Implement early stopping - Monitor training progress - Use proper validation4. Inference
- Optimize for performance - Implement caching - Monitor prediction quality - Handle edge cases5. Monitoring
- Track model performance - Monitor data quality - Implement alerting - Version control models🔧 Troubleshooting
Common Issues
1. Overfitting - Increase regularization - Add dropout layers - Use early stopping - Collect more data
2. Underfitting - Increase model complexity - Reduce regularization - Train longer - Add more features
3. Training Instability - Adjust learning rate - Use gradient clipping - Normalize data - Check data quality
4. Poor Performance - Feature engineering - Hyperparameter tuning - Model selection - Data preprocessing
Debug Commands
Check model performance
curl -X GET http://ai-service:8080/actuator/metrics/model.accuracyMonitor training progress
tensorboard --logdir=/logs/trainingCheck data quality
python data_quality_check.pyValidate model predictions
curl -X POST http://ai-service:8080/api/predict -d '{"features": [...]}'
🚀 Next Steps
1. Deploy AI/ML models to production 2. Set up model monitoring and alerting 3. Implement A/B testing for models 4. Optimize inference performance 5. Monitor and retrain models
---
Ready to build intelligent AI/ML applications with TuskLang Java? The future of artificial intelligence is here, and it's powered by TuskLang!