🐘 🤖 TuskLang PHP Machine Learning Guide

PHP Documentation

🤖 TuskLang PHP Machine Learning Guide

"We don't bow to any king" - PHP Edition

Master TuskLang machine learning in PHP! This guide covers ML integration, model training, prediction, and AI patterns that will make your applications intelligent, adaptive, and data-driven.

🎯 Machine Learning Overview

TuskLang provides sophisticated machine learning features that transform your applications into intelligent, self-learning systems. This guide shows you how to implement enterprise-grade ML while maintaining TuskLang's power.

<?php
// config/ml-overview.tsk
[ml_features]
model_training: @ml.model.train(@request.training_config)
prediction_engine: @ml.prediction.engine(@request.prediction_config)
feature_engineering: @ml.feature.engineer(@request.feature_config)
ai_integration: @ml.ai.integrate(@request.ai_config)

🧠 Model Training and Management

Basic Model Training

<?php
// config/ml-model-training-basic.tsk
[model_training]

Basic model training configuration

training_config: @ml.training.configure({ "model_type": "classification", "algorithm": "random_forest", "dataset": "user_behavior.csv", "features": ["age", "income", "location", "browsing_history"], "target": "purchase_likelihood" })

[training_parameters]

Training parameters

training_params: @ml.training.parameters({ "test_size": 0.2, "random_state": 42, "n_estimators": 100, "max_depth": 10, "cross_validation": 5 })

[model_evaluation]

Model evaluation

model_evaluation: @ml.evaluation.metrics({ "accuracy": true, "precision": true, "recall": true, "f1_score": true, "roc_auc": true })

Advanced Model Training

<?php
// config/ml-model-training-advanced.tsk
[advanced_training]

Advanced model training

hyperparameter_tuning: @ml.training.hyperparameter({ "method": "grid_search", "parameters": { "n_estimators": [50, 100, 200], "max_depth": [5, 10, 15], "min_samples_split": [2, 5, 10] }, "cv_folds": 5 })

[ensemble_learning]

Ensemble learning

ensemble_models: @ml.training.ensemble({ "models": [ {"type": "random_forest", "weight": 0.4}, {"type": "gradient_boosting", "weight": 0.3}, {"type": "neural_network", "weight": 0.3} ], "voting_method": "soft" })

[auto_ml]

AutoML configuration

auto_ml: @ml.training.automl({ "enabled": true, "time_limit": 3600, "algorithms": ["random_forest", "xgboost", "lightgbm", "neural_network"], "feature_selection": true, "feature_engineering": true })

🔮 Prediction and Inference

Real-Time Prediction

<?php
// config/ml-prediction.tsk
[prediction_engine]

Prediction engine configuration

prediction_config: @ml.prediction.configure({ "model_path": "models/user_behavior_model.pkl", "preprocessing_pipeline": "models/preprocessor.pkl", "prediction_threshold": 0.5, "batch_size": 100 })

[real_time_prediction]

Real-time prediction

real_time_prediction: @ml.prediction.realtime({ "endpoint": "/api/predict", "input_schema": { "user_id": "integer", "age": "integer", "income": "float", "location": "string", "browsing_history": "array" }, "output_schema": { "prediction": "float", "confidence": "float", "recommendations": "array" } })

[batch_prediction]

Batch prediction

batch_prediction: @ml.prediction.batch({ "input_file": "data/predictions_input.csv", "output_file": "data/predictions_output.csv", "batch_size": 1000, "parallel_processing": true })

Model Serving

<?php
// config/ml-model-serving.tsk
[model_serving]

Model serving configuration

model_server: @ml.serving.server({ "host": "0.0.0.0", "port": 8080, "models": { "user_behavior": "models/user_behavior_model.pkl", "recommendation": "models/recommendation_model.pkl", "fraud_detection": "models/fraud_detection_model.pkl" } })

[model_versioning]

Model versioning

model_versioning: @ml.serving.versioning({ "version_control": true, "model_registry": "models/registry/", "rollback_enabled": true, "a_b_testing": true })

[model_monitoring]

Model monitoring

model_monitoring: @ml.serving.monitoring({ "prediction_drift": true, "data_drift": true, "model_performance": true, "alert_threshold": 0.1 })

🔧 Feature Engineering

Data Preprocessing

<?php
// config/ml-feature-engineering.tsk
[feature_engineering]

Feature engineering configuration

preprocessing_pipeline: @ml.feature.preprocessing({ "missing_value_handling": "impute", "categorical_encoding": "one_hot", "numerical_scaling": "standard", "feature_selection": "mutual_info" })

[data_cleaning]

Data cleaning

data_cleaning: @ml.feature.cleaning({ "outlier_detection": "isolation_forest", "duplicate_removal": true, "noise_reduction": "smoothing", "data_validation": true })

[feature_extraction]

Feature extraction

feature_extraction: @ml.feature.extraction({ "text_features": { "tfidf": true, "word_embeddings": "word2vec", "sentiment_analysis": true }, "temporal_features": { "seasonality": true, "trends": true, "cyclical_features": true } })

Advanced Feature Engineering

<?php
// config/ml-feature-engineering-advanced.tsk
[advanced_features]

Advanced feature engineering

domain_features: @ml.feature.domain({ "business_rules": [ "user_engagement_score = (page_views 0.3) + (time_spent 0.7)", "purchase_probability = (browsing_frequency 0.4) + (cart_adds 0.6)" ], "interaction_features": true, "aggregation_features": true })

[feature_selection]

Feature selection

feature_selection: @ml.feature.selection({ "methods": ["mutual_info", "chi_square", "recursive_elimination"], "threshold": 0.01, "max_features": 50, "correlation_threshold": 0.8 })

🎯 AI Integration Patterns

Recommendation Systems

<?php
// config/ml-recommendation-systems.tsk
[recommendation_system]

Recommendation system configuration

collaborative_filtering: @ml.recommendation.collaborative({ "algorithm": "matrix_factorization", "similarity_metric": "cosine", "neighborhood_size": 50, "min_ratings": 5 })

[content_based_filtering]

Content-based filtering

content_based: @ml.recommendation.content({ "feature_extraction": "tfidf", "similarity_metric": "cosine", "content_types": ["text", "tags", "categories"] })

[hybrid_recommendation]

Hybrid recommendation

hybrid_recommendation: @ml.recommendation.hybrid({ "collaborative_weight": 0.6, "content_weight": 0.4, "ensemble_method": "weighted_average" })

Natural Language Processing

<?php
// config/ml-nlp.tsk
[nlp_models]

NLP models configuration

text_classification: @ml.nlp.classification({ "model": "bert", "task": "sentiment_analysis", "labels": ["positive", "negative", "neutral"], "fine_tuning": true })

[named_entity_recognition]

Named entity recognition

ner_model: @ml.nlp.ner({ "model": "spacy", "entities": ["person", "organization", "location", "date"], "confidence_threshold": 0.8 })

[text_generation]

Text generation

text_generation: @ml.nlp.generation({ "model": "gpt2", "max_length": 100, "temperature": 0.7, "top_p": 0.9 })

Computer Vision

<?php
// config/ml-computer-vision.tsk
[computer_vision]

Computer vision configuration

image_classification: @ml.vision.classification({ "model": "resnet50", "classes": ["cat", "dog", "bird", "fish"], "input_size": [224, 224], "preprocessing": "imagenet" })

[object_detection]

Object detection

object_detection: @ml.vision.detection({ "model": "yolo", "confidence_threshold": 0.5, "nms_threshold": 0.4, "max_detections": 100 })

[image_segmentation]

Image segmentation

image_segmentation: @ml.vision.segmentation({ "model": "unet", "classes": ["background", "person", "car", "building"], "output_format": "mask" })

📊 Model Performance and Monitoring

Performance Metrics

<?php
// config/ml-performance-monitoring.tsk
[performance_monitoring]

Performance monitoring

model_performance: @ml.monitoring.performance({ "metrics": ["accuracy", "precision", "recall", "f1", "auc"], "tracking_frequency": "daily", "alert_threshold": 0.05 })

[data_drift_detection]

Data drift detection

data_drift: @ml.monitoring.drift({ "detection_method": "ks_test", "features": ["age", "income", "location"], "drift_threshold": 0.05, "alert_enabled": true })

[model_drift_detection]

Model drift detection

model_drift: @ml.monitoring.model_drift({ "detection_method": "prediction_drift", "window_size": 1000, "drift_threshold": 0.1, "retraining_trigger": true })

A/B Testing

<?php
// config/ml-ab-testing.tsk
[ab_testing]

A/B testing configuration

model_ab_testing: @ml.ab_testing.configure({ "test_name": "recommendation_model_v2", "traffic_split": { "control": 0.5, "treatment": 0.5 }, "metrics": ["click_through_rate", "conversion_rate", "revenue"], "test_duration": 30 })

[statistical_analysis]

Statistical analysis

statistical_analysis: @ml.ab_testing.statistics({ "confidence_level": 0.95, "power": 0.8, "minimum_sample_size": 1000, "analysis_method": "bayesian" })

🔄 Automated Machine Learning

AutoML Pipeline

<?php
// config/ml-automl.tsk
[automl_pipeline]

AutoML pipeline configuration

automl_config: @ml.automl.configure({ "time_limit": 3600, "algorithms": ["random_forest", "xgboost", "lightgbm", "neural_network"], "feature_engineering": true, "hyperparameter_optimization": true, "ensemble_methods": true })

[automl_optimization]

AutoML optimization

optimization_config: @ml.automl.optimization({ "optimization_method": "bayesian", "max_trials": 100, "early_stopping": true, "patience": 10 })

[automl_deployment]

AutoML deployment

automl_deployment: @ml.automl.deployment({ "auto_deploy": true, "deployment_criteria": "best_performance", "rollback_enabled": true, "monitoring_enabled": true })

🔐 ML Security and Privacy

Model Security

<?php
// config/ml-security.tsk
[model_security]

Model security configuration

model_protection: @ml.security.protection({ "model_encryption": true, "access_control": true, "audit_logging": true, "version_control": true })

[adversarial_protection]

Adversarial protection

adversarial_protection: @ml.security.adversarial({ "input_validation": true, "robustness_testing": true, "adversarial_training": true, "defense_methods": ["input_preprocessing", "model_ensemble"] })

[privacy_preservation]

Privacy preservation

privacy_preservation: @ml.security.privacy({ "differential_privacy": true, "federated_learning": true, "data_anonymization": true, "secure_multiparty_computation": true })

📚 Best Practices

ML Best Practices

<?php
// config/ml-best-practices.tsk
[best_practices]

ML best practices

data_quality: @ml.best_practice("data_quality", { "data_validation": true, "outlier_detection": true, "missing_value_handling": true, "feature_engineering": true })

model_selection: @ml.best_practice("model_selection", { "cross_validation": true, "hyperparameter_tuning": true, "ensemble_methods": true, "interpretability": true })

[anti_patterns]

ML anti-patterns

avoid_overfitting: @ml.anti_pattern("overfitting", { "regularization": true, "cross_validation": true, "early_stopping": true })

avoid_data_leakage: @ml.anti_pattern("data_leakage", { "proper_splitting": true, "feature_isolation": true, "temporal_validation": true })

📚 Next Steps

Now that you've mastered TuskLang's machine learning features in PHP, explore:

1. Advanced ML Patterns - Implement sophisticated machine learning patterns 2. Deep Learning Integration - Build deep learning models with TuskLang 3. MLOps Pipeline - Implement complete ML operations pipeline 4. Edge ML - Deploy models to edge devices 5. Federated Learning - Implement distributed machine learning

🆘 Need Help?

- Documentation: https://tuskt.sk/documents/php/machine-learning - Examples: https://github.com/tusklang/php-examples - Community: https://community.tuskt.sk

---

Ready to build intelligent applications with TuskLang? You're now a TuskLang machine learning master! 🚀