🐍 ⚡ Performance Optimization - Python
⚡ Performance Optimization - Python
"We don't bow to any king" - Performance Edition
TuskLang provides powerful performance optimization features to ensure your applications run at maximum efficiency.
🚀 Caching Strategies
Memory Caching
from tsk import TSK
from tsk.cache import MemoryCache
import timeConfigure TSK with memory cache
tsk = TSK()
cache = MemoryCache(max_size=1000, ttl=300) # 1000 items, 5 minutes TTL
tsk.set_cache(cache)Performance-optimized configuration
perf_config = tsk.from_string("""
[performance]
Cache expensive operations
user_profile: @cache("1h", "user_profile", @request.user_id)
expensive_data: @cache("5m", "expensive_calculation")
api_response: @cache("30s", "api_call", @request.endpoint)Lazy loading for heavy operations
lazy_data: @lazy("heavy_operation")
background_task: @async("background_processing")expensive_calculation_fujsen = '''
def expensive_calculation(parameters):
# Simulate expensive operation
time.sleep(2)
# Complex calculation
result = sum(i * i for i in range(10000))
return {
'result': result,
'timestamp': time.time(),
'parameters': parameters
}
'''
user_profile_fujsen = '''
def user_profile(user_id):
# Get user data with joins
user = query("""
SELECT u.id, u.username, u.email,
COUNT(p.id) as post_count,
COUNT(f.id) as follower_count
FROM users u
LEFT JOIN posts p ON u.id = p.user_id
LEFT JOIN followers f ON u.id = f.followed_id
WHERE u.id = ?
GROUP BY u.id
""", user_id)
if not user:
return None
return {
'id': user[0][0],
'username': user[0][1],
'email': user[0][2],
'post_count': user[0][3],
'follower_count': user[0][4]
}
'''
""")
Test caching performance
def test_caching_performance():
start_time = time.time()
# First call - should be slow
result1 = perf_config.execute_fujsen('performance', 'expensive_calculation', {'param': 'test'})
first_call_time = time.time() - start_time
# Second call - should be fast (cached)
start_time = time.time()
result2 = perf_config.execute_fujsen('performance', 'expensive_calculation', {'param': 'test'})
second_call_time = time.time() - start_time
print(f"First call: {first_call_time:.2f}s")
print(f"Second call: {second_call_time:.2f}s")
print(f"Speedup: {first_call_time / second_call_time:.1f}x")
Redis Caching
from tsk.cache import RedisCacheRedis cache configuration
redis_cache = RedisCache(
host='localhost',
port=6379,
db=0,
password='your_password',
max_connections=20
)tsk = TSK()
tsk.set_cache(redis_cache)
Redis-optimized configuration
redis_config = tsk.from_string("""
[redis_cache]
Distributed caching
session_data: @cache("30m", "session", @request.session_id)
user_preferences: @cache("1h", "preferences", @request.user_id)
api_results: @cache("5m", "api", @request.url_hash)Cache invalidation
invalidate_user_cache_fujsen = '''
def invalidate_user_cache(user_id):
# Invalidate all user-related caches
cache_keys = [
f"user_profile:{user_id}",
f"user_preferences:{user_id}",
f"user_posts:{user_id}"
]
for key in cache_keys:
cache.delete(key)
return {'invalidated': True, 'keys': cache_keys}
'''cache_metrics_fujsen = '''
def cache_metrics():
# Get cache statistics
stats = cache.get_stats()
return {
'hit_rate': stats.get('hit_rate', 0),
'miss_rate': stats.get('miss_rate', 0),
'total_requests': stats.get('total_requests', 0),
'memory_usage': stats.get('memory_usage', 0)
}
'''
""")
🚀 Database Optimization
Query Optimization
Database optimization configuration
db_optimization = TSK.from_string("""
[database_optimization]
Optimized queries with indexes
fast_user_query_fujsen = '''
def fast_user_query(user_id):
# Use indexed query
user = query("""
SELECT u.id, u.username, u.email, u.created_at,
COUNT(p.id) as post_count
FROM users u
LEFT JOIN posts p ON u.id = p.user_id AND p.published = 1
WHERE u.id = ?
GROUP BY u.id
""", user_id)
if not user:
return None
return {
'id': user[0][0],
'username': user[0][1],
'email': user[0][2],
'created_at': user[0][3],
'post_count': user[0][4]
}
'''batch_insert_fujsen = '''
def batch_insert(records):
# Batch insert for better performance
if not records:
return {'inserted': 0}
# Prepare batch data
placeholders = ','.join(['(?, ?, ?)' for _ in records])
values = []
for record in records:
values.extend([record['name'], record['email'], record['status']])
# Execute batch insert
execute(f"""
INSERT INTO users (name, email, status)
VALUES {placeholders}
""", *values)
return {'inserted': len(records)}
'''
optimized_search_fujsen = '''
def optimized_search(search_term, limit=20, offset=0):
# Use full-text search if available
if has_fulltext_search():
results = query("""
SELECT id, username, email,
MATCH(username, email) AGAINST(?) as relevance
FROM users
WHERE MATCH(username, email) AGAINST(?)
ORDER BY relevance DESC
LIMIT ? OFFSET ?
""", search_term, search_term, limit, offset)
else:
# Fallback to LIKE with index
results = query("""
SELECT id, username, email
FROM users
WHERE username LIKE ? OR email LIKE ?
ORDER BY username
LIMIT ? OFFSET ?
""", f'%{search_term}%', f'%{search_term}%', limit, offset)
return [{
'id': row[0],
'username': row[1],
'email': row[2],
'relevance': row[3] if len(row) > 3 else None
} for row in results]
'''
connection_pool_fujsen = '''
def connection_pool_stats():
# Get connection pool statistics
pool = get_connection_pool()
return {
'total_connections': pool.get_total_connections(),
'active_connections': pool.get_active_connections(),
'idle_connections': pool.get_idle_connections(),
'waiting_requests': pool.get_waiting_requests()
}
'''
""")
Connection Pooling
from tsk.adapters import PostgreSQLAdapterOptimized PostgreSQL adapter with connection pooling
postgres_pool = PostgreSQLAdapter(
host='localhost',
port=5432,
database='myapp',
user='postgres',
password='secret',
pool_size=20,
max_overflow=30,
pool_timeout=30,
pool_recycle=3600
)tsk = TSK()
tsk.set_database_adapter(postgres_pool)
Connection pool monitoring
pool_config = tsk.from_string("""
[connection_pool]
monitor_pool_fujsen = '''
def monitor_pool():
pool_stats = connection_pool_stats()
# Alert if pool is getting full
if pool_stats['active_connections'] > pool_stats['total_connections'] * 0.8:
log_warning(f"Connection pool at {pool_stats['active_connections']}/{pool_stats['total_connections']}")
return pool_stats
'''optimize_queries_fujsen = '''
def optimize_queries():
# Analyze slow queries
slow_queries = query("""
SELECT query, mean_time, calls
FROM pg_stat_statements
ORDER BY mean_time DESC
LIMIT 10
""")
optimizations = []
for query_text, mean_time, calls in slow_queries:
if mean_time > 100: # Queries taking more than 100ms
optimizations.append({
'query': query_text[:100] + '...',
'mean_time': mean_time,
'calls': calls,
'suggestion': 'Consider adding index or optimizing query'
})
return optimizations
'''
""")
🚀 Lazy Loading & Async Processing
Lazy Loading Implementation
Lazy loading configuration
lazy_config = TSK.from_string("""
[lazy_loading]
Lazy load expensive data
expensive_data: @lazy("load_expensive_data")
user_analytics: @lazy("calculate_user_analytics", @request.user_id)
report_data: @lazy("generate_report", @request.report_type)load_expensive_data_fujsen = '''
def load_expensive_data():
# Simulate expensive data loading
time.sleep(3)
# Load large dataset
data = query("""
SELECT * FROM large_dataset
WHERE created_at > date('now', '-30 days')
ORDER BY created_at DESC
""")
return {
'records': len(data),
'data': data[:100], # Limit for performance
'loaded_at': time.time()
}
'''
calculate_user_analytics_fujsen = '''
def calculate_user_analytics(user_id):
# Complex analytics calculation
user_stats = query("""
SELECT
COUNT(p.id) as total_posts,
COUNT(CASE WHEN p.published = 1 THEN 1 END) as published_posts,
AVG(p.view_count) as avg_views,
COUNT(f.id) as followers,
COUNT(f2.id) as following
FROM users u
LEFT JOIN posts p ON u.id = p.user_id
LEFT JOIN followers f ON u.id = f.followed_id
LEFT JOIN followers f2 ON u.id = f2.follower_id
WHERE u.id = ?
GROUP BY u.id
""", user_id)
if not user_stats:
return None
return {
'total_posts': user_stats[0][0],
'published_posts': user_stats[0][1],
'avg_views': user_stats[0][2],
'followers': user_stats[0][3],
'following': user_stats[0][4]
}
'''
generate_report_fujsen = '''
def generate_report(report_type):
if report_type == 'user_activity':
return generate_user_activity_report()
elif report_type == 'system_metrics':
return generate_system_metrics_report()
else:
raise ValueError(f"Unknown report type: {report_type}")
def generate_user_activity_report():
# Generate user activity report
activity_data = query("""
SELECT
DATE(created_at) as date,
COUNT(*) as new_users,
COUNT(CASE WHEN active = 1 THEN 1 END) as active_users
FROM users
WHERE created_at > date('now', '-30 days')
GROUP BY DATE(created_at)
ORDER BY date
""")
return {
'type': 'user_activity',
'data': activity_data,
'generated_at': time.time()
}
def generate_system_metrics_report():
# Generate system metrics report
metrics = {
'total_users': query("SELECT COUNT(*) FROM users")[0][0],
'total_posts': query("SELECT COUNT(*) FROM posts")[0][0],
'active_sessions': query("SELECT COUNT(*) FROM sessions WHERE expires_at > datetime('now')")[0][0]
}
return {
'type': 'system_metrics',
'metrics': metrics,
'generated_at': time.time()
}
'''
""")
Async Processing
import asyncio
from tsk import TSKAsync processing configuration
async_config = TSK.from_string("""
[async_processing]
Async operations
background_task: @async("process_background_task")
email_send: @async("send_email")
data_processing: @async("process_large_dataset")process_background_task_fujsen = '''
async def process_background_task(task_data):
# Simulate async background processing
await asyncio.sleep(2)
# Process task
result = await process_task_data(task_data)
# Update task status
await update_task_status(task_data['task_id'], 'completed', result)
return result
async def process_task_data(data):
# Async data processing
processed_data = []
for item in data['items']:
# Simulate async processing
await asyncio.sleep(0.1)
processed_data.append({
'id': item['id'],
'processed': True,
'timestamp': time.time()
})
return processed_data
async def update_task_status(task_id, status, result):
# Update task status in database
execute("""
UPDATE background_tasks
SET status = ?, result = ?, completed_at = datetime('now')
WHERE id = ?
""", status, json.dumps(result), task_id)
'''
send_email_fujsen = '''
async def send_email(to_email, subject, body):
# Async email sending
email_data = {
'to': to_email,
'subject': subject,
'body': body,
'sent_at': time.time()
}
# Simulate email sending
await asyncio.sleep(1)
# Log email
execute("""
INSERT INTO email_log (to_email, subject, sent_at)
VALUES (?, ?, datetime('now'))
""", to_email, subject)
return {'sent': True, 'email': email_data}
'''
process_large_dataset_fujsen = '''
async def process_large_dataset(dataset_id):
# Async large dataset processing
dataset = query("SELECT * FROM datasets WHERE id = ?", dataset_id)
if not dataset:
raise ValueError("Dataset not found")
# Process in chunks
chunk_size = 1000
total_processed = 0
for offset in range(0, dataset[0][2], chunk_size): # dataset[0][2] = total_records
chunk = await process_chunk(dataset_id, offset, chunk_size)
total_processed += len(chunk)
# Update progress
await update_progress(dataset_id, total_processed, dataset[0][2])
return {'processed': total_processed, 'dataset_id': dataset_id}
async def process_chunk(dataset_id, offset, chunk_size):
# Process a chunk of data
records = query("""
SELECT * FROM dataset_records
WHERE dataset_id = ?
LIMIT ? OFFSET ?
""", dataset_id, chunk_size, offset)
processed = []
for record in records:
# Process each record
processed_record = await process_record(record)
processed.append(processed_record)
return processed
async def process_record(record):
# Process individual record
await asyncio.sleep(0.01) # Simulate processing time
return {
'id': record[0],
'processed': True,
'result': f"Processed record {record[0]}"
}
'''
""")
Async execution
async def run_async_operations():
# Execute async operations
task_result = await async_config.execute_fujsen_async('async_processing', 'process_background_task', {
'task_id': 123,
'items': [{'id': i} for i in range(100)]
})
email_result = await async_config.execute_fujsen_async('async_processing', 'send_email',
'user@example.com', 'Test Subject', 'Test Body')
return task_result, email_result
🚀 Memory Optimization
Memory Management
Memory optimization configuration
memory_config = TSK.from_string("""
[memory_optimization]
Memory-efficient operations
stream_data: @stream("stream_large_dataset")
chunk_processing: @chunk("process_in_chunks")
memory_monitor: @monitor("memory_usage")stream_large_dataset_fujsen = '''
def stream_large_dataset(dataset_id, chunk_size=1000):
# Stream large dataset without loading everything into memory
offset = 0
while True:
# Get chunk of data
chunk = query("""
SELECT id, name, data
FROM large_dataset
WHERE dataset_id = ?
ORDER BY id
LIMIT ? OFFSET ?
""", dataset_id, chunk_size, offset)
if not chunk:
break
# Process chunk
for record in chunk:
yield {
'id': record[0],
'name': record[1],
'data': record[2]
}
offset += chunk_size
'''
process_in_chunks_fujsen = '''
def process_in_chunks(data, chunk_size=100):
# Process data in chunks to manage memory
results = []
for i in range(0, len(data), chunk_size):
chunk = data[i:i + chunk_size]
# Process chunk
chunk_result = process_chunk(chunk)
results.extend(chunk_result)
# Clear chunk from memory
del chunk
del chunk_result
return results
def process_chunk(chunk):
# Process a chunk of data
return [{'id': item['id'], 'processed': True} for item in chunk]
'''
memory_usage_fujsen = '''
def memory_usage():
import psutil
import gc
# Get current memory usage
process = psutil.Process()
memory_info = process.memory_info()
# Force garbage collection
gc.collect()
return {
'rss': memory_info.rss, # Resident Set Size
'vms': memory_info.vms, # Virtual Memory Size
'percent': process.memory_percent(),
'available': psutil.virtual_memory().available
}
'''
optimize_memory_fujsen = '''
def optimize_memory():
import gc
# Force garbage collection
collected = gc.collect()
# Clear cache if memory usage is high
memory_stats = memory_usage()
if memory_stats['percent'] > 80:
# Clear some caches
cache.clear_old_entries()
# Force another garbage collection
gc.collect()
return {
'garbage_collected': collected,
'memory_after': memory_usage()
}
'''
""")
🚀 Parallel Processing
Multi-threading and Multi-processing
import threading
import multiprocessing
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutorParallel processing configuration
parallel_config = TSK.from_string("""
[parallel_processing]
Parallel operations
parallel_task: @parallel("execute_parallel_task")
thread_pool: @thread_pool("process_with_threads")
process_pool: @process_pool("process_with_processes")execute_parallel_task_fujsen = '''
def execute_parallel_task(tasks, max_workers=4):
# Execute tasks in parallel using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all tasks
future_to_task = {
executor.submit(process_single_task, task): task
for task in tasks
}
# Collect results
results = []
for future in concurrent.futures.as_completed(future_to_task):
task = future_to_task[future]
try:
result = future.result()
results.append(result)
except Exception as exc:
results.append({
'task': task,
'error': str(exc)
})
return results
def process_single_task(task):
# Process individual task
task_id = task['id']
data = task['data']
# Simulate processing
time.sleep(0.1)
return {
'task_id': task_id,
'result': f"Processed {len(data)} items",
'processed_at': time.time()
}
'''
process_with_threads_fujsen = '''
def process_with_threads(data_list, thread_count=4):
# Process data using multiple threads
results = []
lock = threading.Lock()
def process_chunk(chunk):
chunk_results = []
for item in chunk:
# Process item
result = process_item(item)
chunk_results.append(result)
# Thread-safe result collection
with lock:
results.extend(chunk_results)
# Split data into chunks
chunk_size = len(data_list) // thread_count
chunks = [data_list[i:i + chunk_size] for i in range(0, len(data_list), chunk_size)]
# Create and start threads
threads = []
for chunk in chunks:
thread = threading.Thread(target=process_chunk, args=(chunk,))
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
return results
def process_item(item):
# Process individual item
return {
'id': item['id'],
'processed': True,
'thread': threading.current_thread().name
}
'''
process_with_processes_fujsen = '''
def process_with_processes(data_list, process_count=4):
# Process data using multiple processes
with ProcessPoolExecutor(max_workers=process_count) as executor:
# Split data into chunks
chunk_size = len(data_list) // process_count
chunks = [data_list[i:i + chunk_size] for i in range(0, len(data_list), chunk_size)]
# Submit chunks to processes
futures = [executor.submit(process_chunk_mp, chunk) for chunk in chunks]
# Collect results
results = []
for future in concurrent.futures.as_completed(futures):
try:
chunk_results = future.result()
results.extend(chunk_results)
except Exception as exc:
print(f"Process error: {exc}")
return results
def process_chunk_mp(chunk):
# Process chunk in separate process
results = []
for item in chunk:
result = process_item_mp(item)
results.append(result)
return results
def process_item_mp(item):
# Process item in separate process
return {
'id': item['id'],
'processed': True,
'process': multiprocessing.current_process().name
}
'''
""")
🚀 Performance Monitoring
Performance Metrics
Performance monitoring configuration
monitoring_config = TSK.from_string("""
[performance_monitoring]
Performance metrics
response_time: @monitor("response_time")
memory_usage: @monitor("memory_usage")
database_performance: @monitor("database_performance")response_time_fujsen = '''
def response_time(operation_name):
start_time = time.time()
def end_operation():
end_time = time.time()
duration = end_time - start_time
# Log performance metric
log_performance_metric(operation_name, duration)
return duration
return end_operation
def log_performance_metric(operation, duration):
# Store performance metric
execute("""
INSERT INTO performance_metrics (operation, duration, timestamp)
VALUES (?, ?, datetime('now'))
""", operation, duration)
'''
memory_usage_fujsen = '''
def memory_usage():
import psutil
process = psutil.Process()
memory_info = process.memory_info()
return {
'rss': memory_info.rss,
'vms': memory_info.vms,
'percent': process.memory_percent(),
'cpu_percent': process.cpu_percent()
}
'''
database_performance_fujsen = '''
def database_performance():
# Get database performance metrics
slow_queries = query("""
SELECT query, mean_time, calls
FROM pg_stat_statements
ORDER BY mean_time DESC
LIMIT 5
""")
connection_stats = connection_pool_stats()
return {
'slow_queries': slow_queries,
'connection_stats': connection_stats,
'timestamp': time.time()
}
'''
performance_report_fujsen = '''
def performance_report():
# Generate comprehensive performance report
# Get recent metrics
recent_metrics = query("""
SELECT operation, AVG(duration) as avg_duration, COUNT(*) as calls
FROM performance_metrics
WHERE timestamp > datetime('now', '-1 hour')
GROUP BY operation
ORDER BY avg_duration DESC
""")
# Get memory usage
memory_stats = memory_usage()
# Get database performance
db_stats = database_performance()
return {
'metrics': recent_metrics,
'memory': memory_stats,
'database': db_stats,
'generated_at': time.time()
}
'''
""")
🎯 Performance Best Practices
1. Caching Strategy
- Use appropriate cache TTL for different data types - Implement cache invalidation strategies - Monitor cache hit rates - Use distributed caching for scalability2. Database Optimization
- Use indexes for frequently queried columns - Implement connection pooling - Use batch operations for bulk data - Monitor slow queries3. Memory Management
- Process large datasets in chunks - Use generators for streaming data - Implement proper garbage collection - Monitor memory usage4. Async Processing
- Use async operations for I/O-bound tasks - Implement proper error handling - Use connection pooling for async operations - Monitor async task performance5. Parallel Processing
- Use threads for I/O-bound tasks - Use processes for CPU-bound tasks - Implement proper synchronization - Monitor resource usage🚀 Next Steps
1. Implement caching for frequently accessed data 2. Optimize database queries with proper indexing 3. Add lazy loading for expensive operations 4. Implement async processing for I/O operations 5. Monitor performance with comprehensive metrics
---
"We don't bow to any king" - TuskLang provides powerful performance optimization features to ensure your applications run at maximum efficiency. Implement caching, optimize queries, and monitor performance to build lightning-fast applications!