🐍 ⚡ Performance Optimization - Python

Python Documentation

⚡ Performance Optimization - Python

"We don't bow to any king" - Performance Edition

TuskLang provides powerful performance optimization features to ensure your applications run at maximum efficiency.

🚀 Caching Strategies

Memory Caching

from tsk import TSK
from tsk.cache import MemoryCache
import time

Configure TSK with memory cache

tsk = TSK() cache = MemoryCache(max_size=1000, ttl=300) # 1000 items, 5 minutes TTL tsk.set_cache(cache)

Performance-optimized configuration

perf_config = tsk.from_string(""" [performance]

Cache expensive operations

user_profile: @cache("1h", "user_profile", @request.user_id) expensive_data: @cache("5m", "expensive_calculation") api_response: @cache("30s", "api_call", @request.endpoint)

Lazy loading for heavy operations

lazy_data: @lazy("heavy_operation") background_task: @async("background_processing")

expensive_calculation_fujsen = ''' def expensive_calculation(parameters): # Simulate expensive operation time.sleep(2) # Complex calculation result = sum(i * i for i in range(10000)) return { 'result': result, 'timestamp': time.time(), 'parameters': parameters } '''

user_profile_fujsen = ''' def user_profile(user_id): # Get user data with joins user = query(""" SELECT u.id, u.username, u.email, COUNT(p.id) as post_count, COUNT(f.id) as follower_count FROM users u LEFT JOIN posts p ON u.id = p.user_id LEFT JOIN followers f ON u.id = f.followed_id WHERE u.id = ? GROUP BY u.id """, user_id) if not user: return None return { 'id': user[0][0], 'username': user[0][1], 'email': user[0][2], 'post_count': user[0][3], 'follower_count': user[0][4] } ''' """)

Test caching performance

def test_caching_performance(): start_time = time.time() # First call - should be slow result1 = perf_config.execute_fujsen('performance', 'expensive_calculation', {'param': 'test'}) first_call_time = time.time() - start_time # Second call - should be fast (cached) start_time = time.time() result2 = perf_config.execute_fujsen('performance', 'expensive_calculation', {'param': 'test'}) second_call_time = time.time() - start_time print(f"First call: {first_call_time:.2f}s") print(f"Second call: {second_call_time:.2f}s") print(f"Speedup: {first_call_time / second_call_time:.1f}x")

Redis Caching

from tsk.cache import RedisCache

Redis cache configuration

redis_cache = RedisCache( host='localhost', port=6379, db=0, password='your_password', max_connections=20 )

tsk = TSK() tsk.set_cache(redis_cache)

Redis-optimized configuration

redis_config = tsk.from_string(""" [redis_cache]

Distributed caching

session_data: @cache("30m", "session", @request.session_id) user_preferences: @cache("1h", "preferences", @request.user_id) api_results: @cache("5m", "api", @request.url_hash)

Cache invalidation

invalidate_user_cache_fujsen = ''' def invalidate_user_cache(user_id): # Invalidate all user-related caches cache_keys = [ f"user_profile:{user_id}", f"user_preferences:{user_id}", f"user_posts:{user_id}" ] for key in cache_keys: cache.delete(key) return {'invalidated': True, 'keys': cache_keys} '''

cache_metrics_fujsen = ''' def cache_metrics(): # Get cache statistics stats = cache.get_stats() return { 'hit_rate': stats.get('hit_rate', 0), 'miss_rate': stats.get('miss_rate', 0), 'total_requests': stats.get('total_requests', 0), 'memory_usage': stats.get('memory_usage', 0) } ''' """)

🚀 Database Optimization

Query Optimization

Database optimization configuration

db_optimization = TSK.from_string(""" [database_optimization]

Optimized queries with indexes

fast_user_query_fujsen = ''' def fast_user_query(user_id): # Use indexed query user = query(""" SELECT u.id, u.username, u.email, u.created_at, COUNT(p.id) as post_count FROM users u LEFT JOIN posts p ON u.id = p.user_id AND p.published = 1 WHERE u.id = ? GROUP BY u.id """, user_id) if not user: return None return { 'id': user[0][0], 'username': user[0][1], 'email': user[0][2], 'created_at': user[0][3], 'post_count': user[0][4] } '''

batch_insert_fujsen = ''' def batch_insert(records): # Batch insert for better performance if not records: return {'inserted': 0} # Prepare batch data placeholders = ','.join(['(?, ?, ?)' for _ in records]) values = [] for record in records: values.extend([record['name'], record['email'], record['status']]) # Execute batch insert execute(f""" INSERT INTO users (name, email, status) VALUES {placeholders} """, *values) return {'inserted': len(records)} '''

optimized_search_fujsen = ''' def optimized_search(search_term, limit=20, offset=0): # Use full-text search if available if has_fulltext_search(): results = query(""" SELECT id, username, email, MATCH(username, email) AGAINST(?) as relevance FROM users WHERE MATCH(username, email) AGAINST(?) ORDER BY relevance DESC LIMIT ? OFFSET ? """, search_term, search_term, limit, offset) else: # Fallback to LIKE with index results = query(""" SELECT id, username, email FROM users WHERE username LIKE ? OR email LIKE ? ORDER BY username LIMIT ? OFFSET ? """, f'%{search_term}%', f'%{search_term}%', limit, offset) return [{ 'id': row[0], 'username': row[1], 'email': row[2], 'relevance': row[3] if len(row) > 3 else None } for row in results] '''

connection_pool_fujsen = ''' def connection_pool_stats(): # Get connection pool statistics pool = get_connection_pool() return { 'total_connections': pool.get_total_connections(), 'active_connections': pool.get_active_connections(), 'idle_connections': pool.get_idle_connections(), 'waiting_requests': pool.get_waiting_requests() } ''' """)

Connection Pooling

from tsk.adapters import PostgreSQLAdapter

Optimized PostgreSQL adapter with connection pooling

postgres_pool = PostgreSQLAdapter( host='localhost', port=5432, database='myapp', user='postgres', password='secret', pool_size=20, max_overflow=30, pool_timeout=30, pool_recycle=3600 )

tsk = TSK() tsk.set_database_adapter(postgres_pool)

Connection pool monitoring

pool_config = tsk.from_string(""" [connection_pool] monitor_pool_fujsen = ''' def monitor_pool(): pool_stats = connection_pool_stats() # Alert if pool is getting full if pool_stats['active_connections'] > pool_stats['total_connections'] * 0.8: log_warning(f"Connection pool at {pool_stats['active_connections']}/{pool_stats['total_connections']}") return pool_stats '''

optimize_queries_fujsen = ''' def optimize_queries(): # Analyze slow queries slow_queries = query(""" SELECT query, mean_time, calls FROM pg_stat_statements ORDER BY mean_time DESC LIMIT 10 """) optimizations = [] for query_text, mean_time, calls in slow_queries: if mean_time > 100: # Queries taking more than 100ms optimizations.append({ 'query': query_text[:100] + '...', 'mean_time': mean_time, 'calls': calls, 'suggestion': 'Consider adding index or optimizing query' }) return optimizations ''' """)

🚀 Lazy Loading & Async Processing

Lazy Loading Implementation

Lazy loading configuration

lazy_config = TSK.from_string(""" [lazy_loading]

Lazy load expensive data

expensive_data: @lazy("load_expensive_data") user_analytics: @lazy("calculate_user_analytics", @request.user_id) report_data: @lazy("generate_report", @request.report_type)

load_expensive_data_fujsen = ''' def load_expensive_data(): # Simulate expensive data loading time.sleep(3) # Load large dataset data = query(""" SELECT * FROM large_dataset WHERE created_at > date('now', '-30 days') ORDER BY created_at DESC """) return { 'records': len(data), 'data': data[:100], # Limit for performance 'loaded_at': time.time() } '''

calculate_user_analytics_fujsen = ''' def calculate_user_analytics(user_id): # Complex analytics calculation user_stats = query(""" SELECT COUNT(p.id) as total_posts, COUNT(CASE WHEN p.published = 1 THEN 1 END) as published_posts, AVG(p.view_count) as avg_views, COUNT(f.id) as followers, COUNT(f2.id) as following FROM users u LEFT JOIN posts p ON u.id = p.user_id LEFT JOIN followers f ON u.id = f.followed_id LEFT JOIN followers f2 ON u.id = f2.follower_id WHERE u.id = ? GROUP BY u.id """, user_id) if not user_stats: return None return { 'total_posts': user_stats[0][0], 'published_posts': user_stats[0][1], 'avg_views': user_stats[0][2], 'followers': user_stats[0][3], 'following': user_stats[0][4] } '''

generate_report_fujsen = ''' def generate_report(report_type): if report_type == 'user_activity': return generate_user_activity_report() elif report_type == 'system_metrics': return generate_system_metrics_report() else: raise ValueError(f"Unknown report type: {report_type}")

def generate_user_activity_report(): # Generate user activity report activity_data = query(""" SELECT DATE(created_at) as date, COUNT(*) as new_users, COUNT(CASE WHEN active = 1 THEN 1 END) as active_users FROM users WHERE created_at > date('now', '-30 days') GROUP BY DATE(created_at) ORDER BY date """) return { 'type': 'user_activity', 'data': activity_data, 'generated_at': time.time() }

def generate_system_metrics_report(): # Generate system metrics report metrics = { 'total_users': query("SELECT COUNT(*) FROM users")[0][0], 'total_posts': query("SELECT COUNT(*) FROM posts")[0][0], 'active_sessions': query("SELECT COUNT(*) FROM sessions WHERE expires_at > datetime('now')")[0][0] } return { 'type': 'system_metrics', 'metrics': metrics, 'generated_at': time.time() } ''' """)

Async Processing

import asyncio
from tsk import TSK

Async processing configuration

async_config = TSK.from_string(""" [async_processing]

Async operations

background_task: @async("process_background_task") email_send: @async("send_email") data_processing: @async("process_large_dataset")

process_background_task_fujsen = ''' async def process_background_task(task_data): # Simulate async background processing await asyncio.sleep(2) # Process task result = await process_task_data(task_data) # Update task status await update_task_status(task_data['task_id'], 'completed', result) return result

async def process_task_data(data): # Async data processing processed_data = [] for item in data['items']: # Simulate async processing await asyncio.sleep(0.1) processed_data.append({ 'id': item['id'], 'processed': True, 'timestamp': time.time() }) return processed_data

async def update_task_status(task_id, status, result): # Update task status in database execute(""" UPDATE background_tasks SET status = ?, result = ?, completed_at = datetime('now') WHERE id = ? """, status, json.dumps(result), task_id) '''

send_email_fujsen = ''' async def send_email(to_email, subject, body): # Async email sending email_data = { 'to': to_email, 'subject': subject, 'body': body, 'sent_at': time.time() } # Simulate email sending await asyncio.sleep(1) # Log email execute(""" INSERT INTO email_log (to_email, subject, sent_at) VALUES (?, ?, datetime('now')) """, to_email, subject) return {'sent': True, 'email': email_data} '''

process_large_dataset_fujsen = ''' async def process_large_dataset(dataset_id): # Async large dataset processing dataset = query("SELECT * FROM datasets WHERE id = ?", dataset_id) if not dataset: raise ValueError("Dataset not found") # Process in chunks chunk_size = 1000 total_processed = 0 for offset in range(0, dataset[0][2], chunk_size): # dataset[0][2] = total_records chunk = await process_chunk(dataset_id, offset, chunk_size) total_processed += len(chunk) # Update progress await update_progress(dataset_id, total_processed, dataset[0][2]) return {'processed': total_processed, 'dataset_id': dataset_id}

async def process_chunk(dataset_id, offset, chunk_size): # Process a chunk of data records = query(""" SELECT * FROM dataset_records WHERE dataset_id = ? LIMIT ? OFFSET ? """, dataset_id, chunk_size, offset) processed = [] for record in records: # Process each record processed_record = await process_record(record) processed.append(processed_record) return processed

async def process_record(record): # Process individual record await asyncio.sleep(0.01) # Simulate processing time return { 'id': record[0], 'processed': True, 'result': f"Processed record {record[0]}" } ''' """)

Async execution

async def run_async_operations(): # Execute async operations task_result = await async_config.execute_fujsen_async('async_processing', 'process_background_task', { 'task_id': 123, 'items': [{'id': i} for i in range(100)] }) email_result = await async_config.execute_fujsen_async('async_processing', 'send_email', 'user@example.com', 'Test Subject', 'Test Body') return task_result, email_result

🚀 Memory Optimization

Memory Management

Memory optimization configuration

memory_config = TSK.from_string(""" [memory_optimization]

Memory-efficient operations

stream_data: @stream("stream_large_dataset") chunk_processing: @chunk("process_in_chunks") memory_monitor: @monitor("memory_usage")

stream_large_dataset_fujsen = ''' def stream_large_dataset(dataset_id, chunk_size=1000): # Stream large dataset without loading everything into memory offset = 0 while True: # Get chunk of data chunk = query(""" SELECT id, name, data FROM large_dataset WHERE dataset_id = ? ORDER BY id LIMIT ? OFFSET ? """, dataset_id, chunk_size, offset) if not chunk: break # Process chunk for record in chunk: yield { 'id': record[0], 'name': record[1], 'data': record[2] } offset += chunk_size '''

process_in_chunks_fujsen = ''' def process_in_chunks(data, chunk_size=100): # Process data in chunks to manage memory results = [] for i in range(0, len(data), chunk_size): chunk = data[i:i + chunk_size] # Process chunk chunk_result = process_chunk(chunk) results.extend(chunk_result) # Clear chunk from memory del chunk del chunk_result return results

def process_chunk(chunk): # Process a chunk of data return [{'id': item['id'], 'processed': True} for item in chunk] '''

memory_usage_fujsen = ''' def memory_usage(): import psutil import gc # Get current memory usage process = psutil.Process() memory_info = process.memory_info() # Force garbage collection gc.collect() return { 'rss': memory_info.rss, # Resident Set Size 'vms': memory_info.vms, # Virtual Memory Size 'percent': process.memory_percent(), 'available': psutil.virtual_memory().available } '''

optimize_memory_fujsen = ''' def optimize_memory(): import gc # Force garbage collection collected = gc.collect() # Clear cache if memory usage is high memory_stats = memory_usage() if memory_stats['percent'] > 80: # Clear some caches cache.clear_old_entries() # Force another garbage collection gc.collect() return { 'garbage_collected': collected, 'memory_after': memory_usage() } ''' """)

🚀 Parallel Processing

Multi-threading and Multi-processing

import threading
import multiprocessing
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor

Parallel processing configuration

parallel_config = TSK.from_string(""" [parallel_processing]

Parallel operations

parallel_task: @parallel("execute_parallel_task") thread_pool: @thread_pool("process_with_threads") process_pool: @process_pool("process_with_processes")

execute_parallel_task_fujsen = ''' def execute_parallel_task(tasks, max_workers=4): # Execute tasks in parallel using ThreadPoolExecutor with ThreadPoolExecutor(max_workers=max_workers) as executor: # Submit all tasks future_to_task = { executor.submit(process_single_task, task): task for task in tasks } # Collect results results = [] for future in concurrent.futures.as_completed(future_to_task): task = future_to_task[future] try: result = future.result() results.append(result) except Exception as exc: results.append({ 'task': task, 'error': str(exc) }) return results

def process_single_task(task): # Process individual task task_id = task['id'] data = task['data'] # Simulate processing time.sleep(0.1) return { 'task_id': task_id, 'result': f"Processed {len(data)} items", 'processed_at': time.time() } '''

process_with_threads_fujsen = ''' def process_with_threads(data_list, thread_count=4): # Process data using multiple threads results = [] lock = threading.Lock() def process_chunk(chunk): chunk_results = [] for item in chunk: # Process item result = process_item(item) chunk_results.append(result) # Thread-safe result collection with lock: results.extend(chunk_results) # Split data into chunks chunk_size = len(data_list) // thread_count chunks = [data_list[i:i + chunk_size] for i in range(0, len(data_list), chunk_size)] # Create and start threads threads = [] for chunk in chunks: thread = threading.Thread(target=process_chunk, args=(chunk,)) threads.append(thread) thread.start() # Wait for all threads to complete for thread in threads: thread.join() return results

def process_item(item): # Process individual item return { 'id': item['id'], 'processed': True, 'thread': threading.current_thread().name } '''

process_with_processes_fujsen = ''' def process_with_processes(data_list, process_count=4): # Process data using multiple processes with ProcessPoolExecutor(max_workers=process_count) as executor: # Split data into chunks chunk_size = len(data_list) // process_count chunks = [data_list[i:i + chunk_size] for i in range(0, len(data_list), chunk_size)] # Submit chunks to processes futures = [executor.submit(process_chunk_mp, chunk) for chunk in chunks] # Collect results results = [] for future in concurrent.futures.as_completed(futures): try: chunk_results = future.result() results.extend(chunk_results) except Exception as exc: print(f"Process error: {exc}") return results

def process_chunk_mp(chunk): # Process chunk in separate process results = [] for item in chunk: result = process_item_mp(item) results.append(result) return results

def process_item_mp(item): # Process item in separate process return { 'id': item['id'], 'processed': True, 'process': multiprocessing.current_process().name } ''' """)

🚀 Performance Monitoring

Performance Metrics

Performance monitoring configuration

monitoring_config = TSK.from_string(""" [performance_monitoring]

Performance metrics

response_time: @monitor("response_time") memory_usage: @monitor("memory_usage") database_performance: @monitor("database_performance")

response_time_fujsen = ''' def response_time(operation_name): start_time = time.time() def end_operation(): end_time = time.time() duration = end_time - start_time # Log performance metric log_performance_metric(operation_name, duration) return duration return end_operation

def log_performance_metric(operation, duration): # Store performance metric execute(""" INSERT INTO performance_metrics (operation, duration, timestamp) VALUES (?, ?, datetime('now')) """, operation, duration) '''

memory_usage_fujsen = ''' def memory_usage(): import psutil process = psutil.Process() memory_info = process.memory_info() return { 'rss': memory_info.rss, 'vms': memory_info.vms, 'percent': process.memory_percent(), 'cpu_percent': process.cpu_percent() } '''

database_performance_fujsen = ''' def database_performance(): # Get database performance metrics slow_queries = query(""" SELECT query, mean_time, calls FROM pg_stat_statements ORDER BY mean_time DESC LIMIT 5 """) connection_stats = connection_pool_stats() return { 'slow_queries': slow_queries, 'connection_stats': connection_stats, 'timestamp': time.time() } '''

performance_report_fujsen = ''' def performance_report(): # Generate comprehensive performance report # Get recent metrics recent_metrics = query(""" SELECT operation, AVG(duration) as avg_duration, COUNT(*) as calls FROM performance_metrics WHERE timestamp > datetime('now', '-1 hour') GROUP BY operation ORDER BY avg_duration DESC """) # Get memory usage memory_stats = memory_usage() # Get database performance db_stats = database_performance() return { 'metrics': recent_metrics, 'memory': memory_stats, 'database': db_stats, 'generated_at': time.time() } ''' """)

🎯 Performance Best Practices

1. Caching Strategy

- Use appropriate cache TTL for different data types - Implement cache invalidation strategies - Monitor cache hit rates - Use distributed caching for scalability

2. Database Optimization

- Use indexes for frequently queried columns - Implement connection pooling - Use batch operations for bulk data - Monitor slow queries

3. Memory Management

- Process large datasets in chunks - Use generators for streaming data - Implement proper garbage collection - Monitor memory usage

4. Async Processing

- Use async operations for I/O-bound tasks - Implement proper error handling - Use connection pooling for async operations - Monitor async task performance

5. Parallel Processing

- Use threads for I/O-bound tasks - Use processes for CPU-bound tasks - Implement proper synchronization - Monitor resource usage

🚀 Next Steps

1. Implement caching for frequently accessed data 2. Optimize database queries with proper indexing 3. Add lazy loading for expensive operations 4. Implement async processing for I/O operations 5. Monitor performance with comprehensive metrics

---

"We don't bow to any king" - TuskLang provides powerful performance optimization features to ensure your applications run at maximum efficiency. Implement caching, optimize queries, and monitor performance to build lightning-fast applications!