🐍 ⚡ Event-Driven Architecture - Python

Python Documentation

⚡ Event-Driven Architecture - Python

"We don't bow to any king" - Event-Driven Edition

TuskLang empowers you to build scalable, decoupled event-driven systems with robust event publishing, subscription, and processing capabilities.

🚀 Event-Driven Concepts

What is Event-Driven Architecture?

- Event Producers: Components that generate events (e.g., user actions, system changes). - Event Consumers: Components that react to events (e.g., services, workflows). - Event Bus/Broker: Middleware for delivering events (e.g., Redis, RabbitMQ, Kafka). - Event Types: Domain events, integration events, system events.

🏗️ Event Publishing & Subscription

Basic Event Publishing

from tsk import TSK
import redis
import json
import time

Event configuration

event_config = TSK.from_string(""" [event_system]

Event bus configuration

event_bus: @env("EVENT_BUS", "redis://localhost:6379/0") event_channel: "tusk_events"

Publish event

publish_event_fujsen = ''' def publish_event(event_type, payload, metadata=None): r = redis.from_url(event_bus) event = { 'type': event_type, 'payload': payload, 'metadata': metadata or {}, 'timestamp': time.time() } r.publish(event_channel, json.dumps(event)) return event '''

Subscribe to events

subscribe_events_fujsen = ''' def subscribe_events(handler, event_types=None): r = redis.from_url(event_bus) pubsub = r.pubsub() pubsub.subscribe(event_channel) for message in pubsub.listen(): if message['type'] == 'message': event = json.loads(message['data']) if event_types and event['type'] not in event_types: continue handler(event) ''' """)

Example event handler

def handle_event(event): print(f"Received event: {event['type']} at {event['timestamp']}") # Process event payload

Publishing an event

event_config.execute_fujsen('event_system', 'publish_event', 'user_registered', {'user_id': 123})

Subscribing to events (in a background thread or process)

event_config.execute_fujsen('event_system', 'subscribe_events', handle_event, ['user_registered'])

🧩 Event Processing Patterns

Synchronous vs. Asynchronous Processing

- Synchronous: Immediate processing, suitable for simple workflows. - Asynchronous: Decoupled, scalable, use for heavy or distributed workloads.

Event Sourcing

Event sourcing configuration

event_sourcing = TSK.from_string(""" [event_sourcing]

Store event

store_event_fujsen = ''' def store_event(event_type, payload): execute(""" INSERT INTO event_store (event_type, payload, timestamp) VALUES (?, ?, datetime('now')) """, event_type, json.dumps(payload)) return True '''

Replay events

replay_events_fujsen = ''' def replay_events(event_type=None, since=None): query_str = "SELECT event_type, payload, timestamp FROM event_store" params = [] if event_type: query_str += " WHERE event_type = ?" params.append(event_type) if since: query_str += " AND timestamp > ?" if event_type else " WHERE timestamp > ?" params.append(since) events = query(query_str, *params) return [{ 'event_type': row[0], 'payload': json.loads(row[1]), 'timestamp': row[2] } for row in events] ''' """)

🔄 Event-Driven Workflows

Choreography vs. Orchestration

- Choreography: Services react to events independently (loose coupling). - Orchestration: Central coordinator directs event flow (more control).

Example: Choreographed Workflow

Service A: Publishes event when user registers

Service B: Subscribes to 'user_registered' and sends welcome email

Service C: Subscribes to 'user_registered' and creates user profile

In Service B:

def handle_user_registered(event): user_id = event['payload']['user_id'] send_welcome_email(user_id)

In Service C:

def handle_user_registered(event): user_id = event['payload']['user_id'] create_user_profile(user_id)

🚦 Event Reliability & Delivery

At-Least-Once vs. Exactly-Once

- At-Least-Once: Most common, may require idempotency. - Exactly-Once: Harder, requires deduplication and transactional guarantees.

Dead Letter Queues

Dead letter queue configuration

dlq_config = TSK.from_string(""" [dead_letter_queue] dlq_channel: "tusk_dlq"

Publish to DLQ

publish_dlq_fujsen = ''' def publish_dlq(event, reason): r = redis.from_url(event_bus) dlq_event = { 'original_event': event, 'reason': reason, 'timestamp': time.time() } r.publish(dlq_channel, json.dumps(dlq_event)) return dlq_event ''' """)

📊 Event Monitoring & Tracing

Event Metrics

- Event throughput, processing latency, error rates, DLQ counts.

Distributed Tracing for Events

- Correlate event flows across services using trace IDs.

🎯 Event-Driven Best Practices

- Use clear event naming conventions - Ensure idempotency in event handlers - Monitor event delivery and failures - Use dead letter queues for failed events - Document event contracts and schemas - Prefer asynchronous processing for scalability

🚀 Next Steps

1. Define your event types and contracts 2. Implement event publishing and subscription 3. Set up event storage and replay 4. Monitor event flows and failures 5. Document your event-driven architecture

---

"We don't bow to any king" - TuskLang empowers you to build scalable, decoupled event-driven systems. Publish, subscribe, process, and monitor events with confidence!