🐍 Machine Learning with TuskLang Python SDK

Python Documentation

Machine Learning with TuskLang Python SDK

Overview

TuskLang's Python SDK provides seamless integration with machine learning frameworks, enabling you to build AI-powered applications that leverage the revolutionary capabilities of the TuskLang ecosystem. From simple predictive models to complex neural networks, TuskLang makes ML accessible and powerful.

Installation & Setup

Core ML Dependencies

Install TuskLang Python SDK with ML extensions

pip install tuskml[full]

Or install specific ML frameworks

pip install tuskml[torch] # PyTorch integration pip install tuskml[tensorflow] # TensorFlow integration pip install tuskml[sklearn] # Scikit-learn integration

Environment Configuration

peanu.tsk configuration for ML workloads

ml_config = { "gpu_enabled": true, "model_cache_dir": "/var/cache/tuskml/models", "batch_size": 32, "precision": "float16", # or "float32", "bfloat16" "distributed_training": false, "model_registry": { "backend": "tuskdb", "versioning": true, "experiment_tracking": true } }

Basic ML Operations

Data Loading & Preprocessing

from tuskml import DataLoader, Preprocessor
from tuskml.fujsen import @load_dataset

Load data using FUJSEN operators

@dataset = @load_dataset("customer_behavior") @features = @extract_features(@dataset, ["age", "income", "purchase_history"])

TuskLang-native data loading

loader = DataLoader( source="@dataset", batch_size=32, shuffle=True, num_workers=4 )

Preprocessing pipeline

preprocessor = Preprocessor([ "normalize", "encode_categorical", "handle_missing", "feature_selection" ])

@processed_data = preprocessor.fit_transform(@features)

Model Training

from tuskml import ModelTrainer, ModelRegistry
from tuskml.models import TuskNeuralNetwork

Define model architecture

model = TuskNeuralNetwork( layers=[128, 64, 32, 1], activation="relu", dropout=0.2, batch_norm=True )

Training configuration

trainer = ModelTrainer( model=model, optimizer="adam", loss="binary_crossentropy", metrics=["accuracy", "f1_score"], callbacks=["early_stopping", "model_checkpoint"] )

Train with TuskLang integration

@trained_model = trainer.fit( @processed_data, epochs=100, validation_split=0.2, use_tuskdb=True # Store training logs in TuskDB )

Register model in TuskLang registry

registry = ModelRegistry() @model_id = registry.register( @trained_model, name="customer_churn_predictor", version="1.0.0", metadata={ "accuracy": 0.89, "training_time": "2.5h", "dataset_size": 50000 } )

Advanced ML Features

Distributed Training

from tuskml.distributed import DistributedTrainer
from tuskml.flexequil import FlexEquilCluster

Set up distributed training cluster

cluster = FlexEquilCluster( nodes=["node1:5000", "node2:5000", "node3:5000"], gpu_per_node=2, memory_per_node="32GB" )

Distributed trainer

dist_trainer = DistributedTrainer( model=model, cluster=cluster, strategy="data_parallel", sync_batch_norm=True )

@distributed_model = dist_trainer.fit( @processed_data, epochs=50, batch_size=128 )

Model Serving & Inference

from tuskml.serving import ModelServer, InferenceEngine

Deploy model for serving

server = ModelServer( model="@trained_model", port=8080, workers=4, gpu_enabled=True )

Start serving

server.start()

Inference engine for batch processing

engine = InferenceEngine( model="@trained_model", batch_size=64, preprocessors=[preprocessor] )

Batch inference

@predictions = engine.predict(@new_data)

AutoML & Hyperparameter Optimization

from tuskml.automl import AutoMLPipeline, HyperparameterOptimizer

AutoML pipeline

automl = AutoMLPipeline( task="classification", time_limit=3600, # 1 hour max_models=50, ensemble_method="stacking" )

@best_model = automl.fit(@processed_data)

Hyperparameter optimization

optimizer = HyperparameterOptimizer( model_class=TuskNeuralNetwork, param_space={ "layers": [[64, 32], [128, 64, 32], [256, 128, 64, 32]], "learning_rate": [0.001, 0.01, 0.1], "dropout": [0.1, 0.2, 0.3] }, optimization_method="bayesian", n_trials=100 )

@optimized_model = optimizer.optimize(@processed_data)

ML Pipeline Integration

End-to-End ML Pipeline

from tuskml.pipeline import MLPipeline
from tuskml.monitoring import ModelMonitor

Complete ML pipeline

pipeline = MLPipeline([ "data_loading", "preprocessing", "feature_engineering", "model_training", "evaluation", "deployment" ])

Execute pipeline

@pipeline_result = pipeline.execute( config={ "dataset": "@dataset", "target": "churn", "test_size": 0.2, "random_state": 42 } )

Model monitoring

monitor = ModelMonitor( model="@trained_model", metrics=["accuracy", "precision", "recall"], drift_detection=True, alert_threshold=0.05 )

monitor.start_monitoring()

Real-time ML with TuskLang

from tuskml.streaming import StreamingMLPipeline
from tuskml.fujsen import @stream_data

Streaming ML pipeline

stream_pipeline = StreamingMLPipeline( model="@trained_model", preprocessor=preprocessor, window_size=1000, update_frequency=100 )

Process streaming data

@stream_predictions = stream_pipeline.process_stream( @stream_data, output_format="json" )

Real-time feature engineering

@real_time_features = @extract_streaming_features( @stream_data, features=["user_behavior", "transaction_patterns"], window_size=300 )

ML Model Management

Model Versioning & Deployment

from tuskml.deployment import ModelDeployer
from tuskml.versioning import ModelVersionManager

Model versioning

version_manager = ModelVersionManager() @new_version = version_manager.create_version( model="@trained_model", changes="Improved feature engineering", performance_metrics={"accuracy": 0.92} )

Model deployment

deployer = ModelDeployer( model="@new_version", environment="production", scaling_config={ "min_replicas": 2, "max_replicas": 10, "cpu_request": "500m", "memory_request": "1Gi" } )

@deployment = deployer.deploy()

Model Explainability

from tuskml.explainability import ModelExplainer
from tuskml.visualization import MLVisualizer

Model explainability

explainer = ModelExplainer( model="@trained_model", method="shap", background_data="@processed_data" )

@explanations = explainer.explain(@test_data)

Visualize explanations

visualizer = MLVisualizer() @explanation_plot = visualizer.plot_shap_values( @explanations, feature_names=@feature_names )

ML with TuskLang Ecosystem

Integration with TuskDB

from tuskml.storage import TuskDBStorage
from tuskml.fujsen import @store_model, @load_model

Store model in TuskDB

@model_storage = TuskDBStorage( database="ml_models", collection="trained_models" )

@store_model(@trained_model, "customer_churn_v1")

Load model from TuskDB

@loaded_model = @load_model("customer_churn_v1")

Store training metrics

@store_metrics = @store_training_metrics( model_id="@model_id", metrics={ "accuracy": 0.89, "precision": 0.87, "recall": 0.91, "f1_score": 0.89 } )

ML with FUJSEN Intelligence

from tuskml.fujsen import @ml_predict, @ml_train, @ml_evaluate

FUJSEN-powered ML operations

@prediction = @ml_predict( model="@trained_model", data="@new_data", confidence_threshold=0.8 )

@training_result = @ml_train( model="@model_architecture", data="@training_data", hyperparameters={ "learning_rate": 0.001, "batch_size": 32, "epochs": 100 } )

@evaluation = @ml_evaluate( model="@trained_model", test_data="@test_data", metrics=["accuracy", "precision", "recall", "f1"] )

Best Practices

Performance Optimization

GPU acceleration

import torch if torch.cuda.is_available(): model = model.cuda() data = data.cuda()

Mixed precision training

from tuskml.optimization import MixedPrecisionTrainer mp_trainer = MixedPrecisionTrainer( model=model, precision="float16" )

Model quantization

from tuskml.optimization import ModelQuantizer quantizer = ModelQuantizer( model="@trained_model", quantization="int8" ) @quantized_model = quantizer.quantize()

Security & Privacy

from tuskml.security import SecureMLPipeline
from tuskml.privacy import DifferentialPrivacy

Secure ML pipeline

secure_pipeline = SecureMLPipeline( model="@trained_model", encryption="aes256", access_control=True )

Differential privacy

dp_trainer = DifferentialPrivacy( model=model, epsilon=1.0, delta=1e-5 ) @dp_model = dp_trainer.fit(@sensitive_data)

Example: Customer Churn Prediction

Complete customer churn prediction system

from tuskml import *

Load and preprocess data

@customer_data = @load_dataset("customer_behavior") @features = @extract_features(@customer_data, [ "age", "income", "purchase_frequency", "support_tickets", "last_login_days" ])

Train model

model = TuskNeuralNetwork(layers=[64, 32, 16, 1]) trainer = ModelTrainer(model=model, optimizer="adam", loss="binary_crossentropy") @churn_model = trainer.fit(@features, epochs=50)

Deploy and monitor

deployer = ModelDeployer(@churn_model, environment="production") @deployment = deployer.deploy()

monitor = ModelMonitor(@churn_model, metrics=["accuracy", "f1_score"]) monitor.start_monitoring()

Real-time predictions

@churn_predictions = @ml_predict( model="@churn_model", data="@live_customer_data" )

Conclusion

TuskLang's Python SDK provides a comprehensive machine learning ecosystem that integrates seamlessly with the revolutionary TuskLang framework. From basic model training to advanced distributed systems, TuskLang makes ML accessible, powerful, and production-ready.

The combination of FUJSEN intelligence, TuskDB storage, and FlexEquil distributed computing creates a unique ML platform that scales from simple predictions to enterprise-grade AI systems. Whether you're building recommendation engines, predictive analytics, or real-time AI applications, TuskLang provides the tools and infrastructure you need to succeed.

Embrace the future of machine learning with TuskLang - where AI meets revolutionary technology.