🐍 Machine Learning with TuskLang Python SDK
Machine Learning with TuskLang Python SDK
Overview
TuskLang's Python SDK provides seamless integration with machine learning frameworks, enabling you to build AI-powered applications that leverage the revolutionary capabilities of the TuskLang ecosystem. From simple predictive models to complex neural networks, TuskLang makes ML accessible and powerful.
Installation & Setup
Core ML Dependencies
Install TuskLang Python SDK with ML extensions
pip install tuskml[full]Or install specific ML frameworks
pip install tuskml[torch] # PyTorch integration
pip install tuskml[tensorflow] # TensorFlow integration
pip install tuskml[sklearn] # Scikit-learn integration
Environment Configuration
peanu.tsk configuration for ML workloads
ml_config = {
"gpu_enabled": true,
"model_cache_dir": "/var/cache/tuskml/models",
"batch_size": 32,
"precision": "float16", # or "float32", "bfloat16"
"distributed_training": false,
"model_registry": {
"backend": "tuskdb",
"versioning": true,
"experiment_tracking": true
}
}
Basic ML Operations
Data Loading & Preprocessing
from tuskml import DataLoader, Preprocessor
from tuskml.fujsen import @load_datasetLoad data using FUJSEN operators
@dataset = @load_dataset("customer_behavior")
@features = @extract_features(@dataset, ["age", "income", "purchase_history"])TuskLang-native data loading
loader = DataLoader(
source="@dataset",
batch_size=32,
shuffle=True,
num_workers=4
)Preprocessing pipeline
preprocessor = Preprocessor([
"normalize",
"encode_categorical",
"handle_missing",
"feature_selection"
])@processed_data = preprocessor.fit_transform(@features)
Model Training
from tuskml import ModelTrainer, ModelRegistry
from tuskml.models import TuskNeuralNetworkDefine model architecture
model = TuskNeuralNetwork(
layers=[128, 64, 32, 1],
activation="relu",
dropout=0.2,
batch_norm=True
)Training configuration
trainer = ModelTrainer(
model=model,
optimizer="adam",
loss="binary_crossentropy",
metrics=["accuracy", "f1_score"],
callbacks=["early_stopping", "model_checkpoint"]
)Train with TuskLang integration
@trained_model = trainer.fit(
@processed_data,
epochs=100,
validation_split=0.2,
use_tuskdb=True # Store training logs in TuskDB
)Register model in TuskLang registry
registry = ModelRegistry()
@model_id = registry.register(
@trained_model,
name="customer_churn_predictor",
version="1.0.0",
metadata={
"accuracy": 0.89,
"training_time": "2.5h",
"dataset_size": 50000
}
)
Advanced ML Features
Distributed Training
from tuskml.distributed import DistributedTrainer
from tuskml.flexequil import FlexEquilClusterSet up distributed training cluster
cluster = FlexEquilCluster(
nodes=["node1:5000", "node2:5000", "node3:5000"],
gpu_per_node=2,
memory_per_node="32GB"
)Distributed trainer
dist_trainer = DistributedTrainer(
model=model,
cluster=cluster,
strategy="data_parallel",
sync_batch_norm=True
)@distributed_model = dist_trainer.fit(
@processed_data,
epochs=50,
batch_size=128
)
Model Serving & Inference
from tuskml.serving import ModelServer, InferenceEngineDeploy model for serving
server = ModelServer(
model="@trained_model",
port=8080,
workers=4,
gpu_enabled=True
)Start serving
server.start()Inference engine for batch processing
engine = InferenceEngine(
model="@trained_model",
batch_size=64,
preprocessors=[preprocessor]
)Batch inference
@predictions = engine.predict(@new_data)
AutoML & Hyperparameter Optimization
from tuskml.automl import AutoMLPipeline, HyperparameterOptimizerAutoML pipeline
automl = AutoMLPipeline(
task="classification",
time_limit=3600, # 1 hour
max_models=50,
ensemble_method="stacking"
)@best_model = automl.fit(@processed_data)
Hyperparameter optimization
optimizer = HyperparameterOptimizer(
model_class=TuskNeuralNetwork,
param_space={
"layers": [[64, 32], [128, 64, 32], [256, 128, 64, 32]],
"learning_rate": [0.001, 0.01, 0.1],
"dropout": [0.1, 0.2, 0.3]
},
optimization_method="bayesian",
n_trials=100
)@optimized_model = optimizer.optimize(@processed_data)
ML Pipeline Integration
End-to-End ML Pipeline
from tuskml.pipeline import MLPipeline
from tuskml.monitoring import ModelMonitorComplete ML pipeline
pipeline = MLPipeline([
"data_loading",
"preprocessing",
"feature_engineering",
"model_training",
"evaluation",
"deployment"
])Execute pipeline
@pipeline_result = pipeline.execute(
config={
"dataset": "@dataset",
"target": "churn",
"test_size": 0.2,
"random_state": 42
}
)Model monitoring
monitor = ModelMonitor(
model="@trained_model",
metrics=["accuracy", "precision", "recall"],
drift_detection=True,
alert_threshold=0.05
)monitor.start_monitoring()
Real-time ML with TuskLang
from tuskml.streaming import StreamingMLPipeline
from tuskml.fujsen import @stream_dataStreaming ML pipeline
stream_pipeline = StreamingMLPipeline(
model="@trained_model",
preprocessor=preprocessor,
window_size=1000,
update_frequency=100
)Process streaming data
@stream_predictions = stream_pipeline.process_stream(
@stream_data,
output_format="json"
)Real-time feature engineering
@real_time_features = @extract_streaming_features(
@stream_data,
features=["user_behavior", "transaction_patterns"],
window_size=300
)
ML Model Management
Model Versioning & Deployment
from tuskml.deployment import ModelDeployer
from tuskml.versioning import ModelVersionManagerModel versioning
version_manager = ModelVersionManager()
@new_version = version_manager.create_version(
model="@trained_model",
changes="Improved feature engineering",
performance_metrics={"accuracy": 0.92}
)Model deployment
deployer = ModelDeployer(
model="@new_version",
environment="production",
scaling_config={
"min_replicas": 2,
"max_replicas": 10,
"cpu_request": "500m",
"memory_request": "1Gi"
}
)@deployment = deployer.deploy()
Model Explainability
from tuskml.explainability import ModelExplainer
from tuskml.visualization import MLVisualizerModel explainability
explainer = ModelExplainer(
model="@trained_model",
method="shap",
background_data="@processed_data"
)@explanations = explainer.explain(@test_data)
Visualize explanations
visualizer = MLVisualizer()
@explanation_plot = visualizer.plot_shap_values(
@explanations,
feature_names=@feature_names
)
ML with TuskLang Ecosystem
Integration with TuskDB
from tuskml.storage import TuskDBStorage
from tuskml.fujsen import @store_model, @load_modelStore model in TuskDB
@model_storage = TuskDBStorage(
database="ml_models",
collection="trained_models"
)@store_model(@trained_model, "customer_churn_v1")
Load model from TuskDB
@loaded_model = @load_model("customer_churn_v1")Store training metrics
@store_metrics = @store_training_metrics(
model_id="@model_id",
metrics={
"accuracy": 0.89,
"precision": 0.87,
"recall": 0.91,
"f1_score": 0.89
}
)
ML with FUJSEN Intelligence
from tuskml.fujsen import @ml_predict, @ml_train, @ml_evaluateFUJSEN-powered ML operations
@prediction = @ml_predict(
model="@trained_model",
data="@new_data",
confidence_threshold=0.8
)@training_result = @ml_train(
model="@model_architecture",
data="@training_data",
hyperparameters={
"learning_rate": 0.001,
"batch_size": 32,
"epochs": 100
}
)
@evaluation = @ml_evaluate(
model="@trained_model",
test_data="@test_data",
metrics=["accuracy", "precision", "recall", "f1"]
)
Best Practices
Performance Optimization
GPU acceleration
import torch
if torch.cuda.is_available():
model = model.cuda()
data = data.cuda()Mixed precision training
from tuskml.optimization import MixedPrecisionTrainer
mp_trainer = MixedPrecisionTrainer(
model=model,
precision="float16"
)Model quantization
from tuskml.optimization import ModelQuantizer
quantizer = ModelQuantizer(
model="@trained_model",
quantization="int8"
)
@quantized_model = quantizer.quantize()
Security & Privacy
from tuskml.security import SecureMLPipeline
from tuskml.privacy import DifferentialPrivacySecure ML pipeline
secure_pipeline = SecureMLPipeline(
model="@trained_model",
encryption="aes256",
access_control=True
)Differential privacy
dp_trainer = DifferentialPrivacy(
model=model,
epsilon=1.0,
delta=1e-5
)
@dp_model = dp_trainer.fit(@sensitive_data)
Example: Customer Churn Prediction
Complete customer churn prediction system
from tuskml import *Load and preprocess data
@customer_data = @load_dataset("customer_behavior")
@features = @extract_features(@customer_data, [
"age", "income", "purchase_frequency",
"support_tickets", "last_login_days"
])Train model
model = TuskNeuralNetwork(layers=[64, 32, 16, 1])
trainer = ModelTrainer(model=model, optimizer="adam", loss="binary_crossentropy")
@churn_model = trainer.fit(@features, epochs=50)Deploy and monitor
deployer = ModelDeployer(@churn_model, environment="production")
@deployment = deployer.deploy()monitor = ModelMonitor(@churn_model, metrics=["accuracy", "f1_score"])
monitor.start_monitoring()
Real-time predictions
@churn_predictions = @ml_predict(
model="@churn_model",
data="@live_customer_data"
)
Conclusion
TuskLang's Python SDK provides a comprehensive machine learning ecosystem that integrates seamlessly with the revolutionary TuskLang framework. From basic model training to advanced distributed systems, TuskLang makes ML accessible, powerful, and production-ready.
The combination of FUJSEN intelligence, TuskDB storage, and FlexEquil distributed computing creates a unique ML platform that scales from simple predictions to enterprise-grade AI systems. Whether you're building recommendation engines, predictive analytics, or real-time AI applications, TuskLang provides the tools and infrastructure you need to succeed.
Embrace the future of machine learning with TuskLang - where AI meets revolutionary technology.