🐍 Natural Language Processing with TuskLang Python SDK
Natural Language Processing with TuskLang Python SDK
Overview
TuskLang's Python SDK provides revolutionary natural language processing capabilities that integrate seamlessly with the FUJSEN intelligence system. From basic text processing to advanced language models, TuskLang makes NLP accessible, powerful, and production-ready.
Installation & Setup
Core NLP Dependencies
Install TuskLang Python SDK with NLP extensions
pip install tusknlp[full]Or install specific NLP components
pip install tusknlp[transformers] # Hugging Face transformers
pip install tusknlp[spacy] # spaCy integration
pip install tusknlp[nltk] # NLTK integration
pip install tusknlp[gensim] # Gensim word vectors
Environment Configuration
peanu.tsk configuration for NLP workloads
nlp_config = {
"language_models": {
"default": "tusk-gpt-3.5",
"cache_dir": "/var/cache/tusknlp/models",
"gpu_enabled": true,
"batch_size": 16
},
"text_processing": {
"max_length": 512,
"truncation": true,
"padding": "max_length",
"return_tensors": "pt"
},
"fujsen_integration": {
"enable_intelligence": true,
"context_window": 2048,
"temperature": 0.7
}
}
Basic Text Processing
Text Loading & Preprocessing
from tusknlp import TextProcessor, Tokenizer
from tusknlp.fujsen import @load_text, @preprocess_textLoad text using FUJSEN operators
@raw_text = @load_text("customer_feedback.txt")
@documents = @load_text("documents/*.txt", batch=True)TuskLang-native text processing
processor = TextProcessor([
"lowercase",
"remove_punctuation",
"remove_stopwords",
"lemmatize",
"normalize_whitespace"
])@processed_text = processor.process(@raw_text)
Advanced tokenization
tokenizer = Tokenizer(
model="tusk-tokenizer",
max_length=512,
truncation=True,
padding=True
)@tokens = tokenizer.tokenize(@processed_text)
Text Analysis & Features
from tusknlp.analysis import TextAnalyzer, FeatureExtractor
from tusknlp.fujsen import @analyze_sentiment, @extract_entitiesBasic text analysis
analyzer = TextAnalyzer()
@analysis = analyzer.analyze(@raw_text, features=[
"sentiment",
"readability",
"complexity",
"tone",
"emotion"
])FUJSEN-powered sentiment analysis
@sentiment = @analyze_sentiment(
text="@raw_text",
model="tusk-sentiment-v2",
confidence_threshold=0.8
)Named entity recognition
@entities = @extract_entities(
text="@raw_text",
entity_types=["person", "organization", "location", "date"]
)Feature extraction
extractor = FeatureExtractor()
@features = extractor.extract(@processed_text, features=[
"tfidf",
"word_embeddings",
"syntactic_features",
"semantic_features"
])
Advanced NLP Models
Language Models & Generation
from tusknlp.models import TuskLanguageModel, TextGenerator
from tusknlp.fujsen import @generate_text, @complete_textTuskLang language model
model = TuskLanguageModel(
model_name="tusk-gpt-3.5",
max_length=1024,
temperature=0.7,
top_p=0.9
)Text generation
@generated_text = model.generate(
prompt="@raw_text",
max_tokens=200,
stop_sequences=["\n\n", "END"]
)FUJSEN-powered text generation
@completion = @generate_text(
prompt="@raw_text",
model="@model",
style="creative",
length="medium"
)Text completion
@completed_text = @complete_text(
partial_text="@raw_text",
completion_length=100,
style="professional"
)
Text Classification & Categorization
from tusknlp.classification import TextClassifier, CategoryPredictor
from tusknlp.fujsen import @classify_text, @categorize_documentsText classifier
classifier = TextClassifier(
model="tusk-classifier-v1",
categories=["positive", "negative", "neutral"],
confidence_threshold=0.7
)@classification = classifier.classify(@raw_text)
FUJSEN-powered classification
@text_category = @classify_text(
text="@raw_text",
categories=["support", "feedback", "complaint", "inquiry"],
model="tusk-intent-classifier"
)Document categorization
@document_categories = @categorize_documents(
documents="@documents",
categories=["technical", "business", "creative", "academic"],
batch_size=32
)
NLP Pipelines
End-to-End NLP Pipeline
from tusknlp.pipeline import NLPipeline
from tusknlp.fujsen import @process_nlp_pipelineComplete NLP pipeline
pipeline = NLPipeline([
"text_loading",
"preprocessing",
"tokenization",
"feature_extraction",
"analysis",
"classification",
"output_generation"
])Execute pipeline
@pipeline_result = pipeline.execute(
config={
"input": "@raw_text",
"tasks": ["sentiment", "entities", "classification"],
"output_format": "json"
}
)FUJSEN-powered pipeline
@nlp_result = @process_nlp_pipeline(
text="@raw_text",
pipeline="comprehensive",
include_metadata=True
)
Real-time NLP Processing
from tusknlp.streaming import StreamingNLPipeline
from tusknlp.fujsen import @stream_text_analysisStreaming NLP pipeline
stream_pipeline = StreamingNLPipeline(
model="@model",
window_size=1000,
update_frequency=100,
real_time=True
)Process streaming text
@stream_analysis = stream_pipeline.process_stream(
@stream_text,
output_format="json"
)Real-time text analysis
@real_time_analysis = @stream_text_analysis(
text_stream="@stream_text",
analysis_types=["sentiment", "entities", "intent"],
latency_threshold=100 # ms
)
Language Understanding
Semantic Analysis
from tusknlp.semantics import SemanticAnalyzer, SimilarityCalculator
from tusknlp.fujsen import @calculate_similarity, @find_semantic_matchesSemantic analysis
semantic_analyzer = SemanticAnalyzer(
model="tusk-semantic-v1",
embedding_dim=768
)@semantic_features = semantic_analyzer.analyze(@raw_text)
Text similarity
similarity_calc = SimilarityCalculator()
@similarity_score = similarity_calc.calculate(
text1="@text1",
text2="@text2",
method="cosine"
)FUJSEN-powered similarity
@semantic_similarity = @calculate_similarity(
texts=["@text1", "@text2", "@text3"],
method="semantic",
threshold=0.8
)Semantic matching
@matches = @find_semantic_matches(
query="@query_text",
candidates="@candidate_texts",
top_k=5
)
Question Answering & Comprehension
from tusknlp.qa import QuestionAnswerer, DocumentQA
from tusknlp.fujsen import @answer_question, @extract_answersQuestion answering
qa_system = QuestionAnswerer(
model="tusk-qa-v1",
context_window=512,
max_answer_length=100
)@answer = qa_system.answer(
question="@question",
context="@context"
)
FUJSEN-powered QA
@qa_result = @answer_question(
question="@question",
context="@context",
model="tusk-qa-advanced",
confidence_threshold=0.8
)Document QA
doc_qa = DocumentQA(
model="@qa_system",
document="@document",
chunk_size=512
)@answers = doc_qa.answer_multiple(
questions=["@q1", "@q2", "@q3"]
)
Answer extraction
@extracted_answers = @extract_answers(
text="@text",
questions=["@q1", "@q2"],
format="structured"
)
Text Generation & Summarization
Advanced Text Generation
from tusknlp.generation import TextGenerator, StyleTransfer
from tusknlp.fujsen import @generate_with_style, @transfer_styleText generator
generator = TextGenerator(
model="tusk-gpt-3.5",
temperature=0.8,
top_p=0.9,
repetition_penalty=1.1
)@generated_content = generator.generate(
prompt="@prompt",
max_tokens=300,
style="creative"
)
FUJSEN-powered generation
@styled_text = @generate_with_style(
prompt="@prompt",
style="professional",
tone="formal",
length="long"
)Style transfer
style_transfer = StyleTransfer(
source_style="casual",
target_style="formal"
)@transferred_text = style_transfer.transfer(@raw_text)
FUJSEN style transfer
@style_result = @transfer_style(
text="@raw_text",
target_style="academic",
preserve_meaning=True
)
Text Summarization
from tusknlp.summarization import TextSummarizer, ExtractiveSummarizer
from tusknlp.fujsen import @summarize_text, @extract_summaryAbstractive summarization
summarizer = TextSummarizer(
model="tusk-summarizer-v1",
max_length=150,
min_length=50
)@summary = summarizer.summarize(@raw_text)
FUJSEN-powered summarization
@text_summary = @summarize_text(
text="@raw_text",
length="medium",
style="concise",
focus="key_points"
)Extractive summarization
extractive = ExtractiveSummarizer(
method="textrank",
num_sentences=5
)@extracted_summary = extractive.summarize(@raw_text)
FUJSEN extractive summary
@key_sentences = @extract_summary(
text="@raw_text",
method="extractive",
num_sentences=3,
importance_threshold=0.7
)
Multilingual NLP
Language Detection & Translation
from tusknlp.multilingual import LanguageDetector, Translator
from tusknlp.fujsen import @detect_language, @translate_textLanguage detection
detector = LanguageDetector(
model="tusk-langdetect-v1",
confidence_threshold=0.8
)@detected_language = detector.detect(@raw_text)
FUJSEN language detection
@language_info = @detect_language(
text="@raw_text",
include_confidence=True,
include_script=True
)Text translation
translator = Translator(
source_lang="@detected_language",
target_lang="en",
model="tusk-translator-v1"
)@translated_text = translator.translate(@raw_text)
FUJSEN translation
@translation = @translate_text(
text="@raw_text",
target_language="es",
preserve_formatting=True,
include_confidence=True
)
Cross-lingual Analysis
from tusknlp.crosslingual import CrossLingualAnalyzer
from tusknlp.fujsen import @cross_lingual_analysisCross-lingual analysis
cross_analyzer = CrossLingualAnalyzer(
model="tusk-crosslingual-v1",
supported_languages=["en", "es", "fr", "de", "zh"]
)@cross_analysis = cross_analyzer.analyze(
texts=["@text_en", "@text_es", "@text_fr"],
analysis_type="sentiment"
)
FUJSEN cross-lingual analysis
@multilingual_result = @cross_lingual_analysis(
texts=["@text1", "@text2", "@text3"],
languages=["en", "es", "fr"],
analysis_types=["sentiment", "entities", "classification"]
)
NLP with TuskLang Ecosystem
Integration with TuskDB
from tusknlp.storage import TuskDBStorage
from tusknlp.fujsen import @store_nlp_result, @load_nlp_modelStore NLP results in TuskDB
@nlp_storage = TuskDBStorage(
database="nlp_results",
collection="text_analysis"
)@store_nlp_result = @store_nlp_result(
text="@raw_text",
analysis="@analysis",
metadata={
"timestamp": "@timestamp",
"model_version": "tusk-nlp-v1.2",
"processing_time": 0.5
}
)
Load NLP models from TuskDB
@loaded_model = @load_nlp_model(
model_name="tusk-sentiment-v2",
version="latest"
)
NLP with FUJSEN Intelligence
from tusknlp.fujsen import @nlp_intelligence, @smart_text_processingFUJSEN-powered NLP intelligence
@intelligent_analysis = @nlp_intelligence(
text="@raw_text",
context="@context",
intelligence_level="advanced",
include_reasoning=True
)Smart text processing
@smart_processing = @smart_text_processing(
text="@raw_text",
tasks=["sentiment", "entities", "summary"],
adaptive_processing=True,
quality_threshold=0.9
)
Best Practices
Performance Optimization
Batch processing
from tusknlp.optimization import BatchProcessorbatch_processor = BatchProcessor(
model="@model",
batch_size=32,
max_workers=4
)
@batch_results = batch_processor.process_batch(@texts)
Model caching
from tusknlp.caching import ModelCachecache = ModelCache(
cache_dir="/var/cache/tusknlp",
max_size="10GB"
)
@cached_model = cache.get_or_load("tusk-sentiment-v1")
Quality Assurance
from tusknlp.quality import NLPQualityChecker
from tusknlp.validation import TextValidatorQuality checking
quality_checker = NLPQualityChecker(
min_confidence=0.8,
max_processing_time=1.0,
quality_metrics=["accuracy", "precision", "recall"]
)@quality_report = quality_checker.check(@nlp_result)
Text validation
validator = TextValidator()
@validation_result = validator.validate(
text="@raw_text",
checks=["length", "language", "content", "format"]
)
Example: Customer Feedback Analysis
Complete customer feedback analysis system
from tusknlp import *Load and preprocess feedback
@feedback_data = @load_text("customer_feedback/*.txt")
@processed_feedback = @preprocess_text(@feedback_data)Analyze sentiment and extract insights
@sentiment_analysis = @analyze_sentiment(
text="@processed_feedback",
model="tusk-sentiment-v2"
)@entities = @extract_entities(
text="@processed_feedback",
entity_types=["product", "feature", "issue"]
)
Classify feedback types
@feedback_categories = @classify_text(
text="@processed_feedback",
categories=["bug_report", "feature_request", "compliment", "complaint"]
)Generate summary and insights
@feedback_summary = @summarize_text(
text="@processed_feedback",
length="medium",
focus="key_insights"
)Store results in TuskDB
@store_feedback_analysis = @store_nlp_result(
feedback="@processed_feedback",
analysis={
"sentiment": "@sentiment_analysis",
"entities": "@entities",
"categories": "@feedback_categories",
"summary": "@feedback_summary"
}
)
Conclusion
TuskLang's Python SDK provides a comprehensive natural language processing ecosystem that leverages the revolutionary FUJSEN intelligence system. From basic text processing to advanced language understanding, TuskLang makes NLP accessible, powerful, and production-ready.
The integration with TuskDB, FlexEquil distributed computing, and the FUJSEN intelligence system creates a unique NLP platform that scales from simple text analysis to enterprise-grade language understanding systems. Whether you're building chatbots, content analysis tools, or multilingual applications, TuskLang provides the tools and infrastructure you need to succeed.
Embrace the future of natural language processing with TuskLang - where language meets revolutionary technology.