🐍 Computer Vision with TuskLang Python SDK
Computer Vision with TuskLang Python SDK
Overview
TuskLang's Python SDK provides revolutionary computer vision capabilities that integrate seamlessly with the FUJSEN intelligence system. From basic image processing to advanced object detection and recognition, TuskLang makes computer vision accessible, powerful, and production-ready.
Installation & Setup
Core Vision Dependencies
Install TuskLang Python SDK with vision extensions
pip install tuskvision[full]Or install specific vision components
pip install tuskvision[opencv] # OpenCV integration
pip install tuskvision[torch] # PyTorch vision models
pip install tuskvision[tensorflow] # TensorFlow vision models
pip install tuskvision[pillow] # PIL/Pillow integration
Environment Configuration
peanu.tsk configuration for vision workloads
vision_config = {
"image_processing": {
"default_format": "RGB",
"max_resolution": [1920, 1080],
"gpu_enabled": true,
"batch_size": 8
},
"model_cache": {
"cache_dir": "/var/cache/tuskvision/models",
"auto_download": true,
"version_control": true
},
"fujsen_integration": {
"enable_intelligence": true,
"context_awareness": true,
"real_time_processing": true
}
}
Basic Image Processing
Image Loading & Preprocessing
from tuskvision import ImageProcessor, ImageLoader
from tuskvision.fujsen import @load_image, @preprocess_imageLoad images using FUJSEN operators
@raw_image = @load_image("product_photo.jpg")
@image_batch = @load_image("images/*.jpg", batch=True)TuskLang-native image processing
processor = ImageProcessor([
"resize",
"normalize",
"color_correction",
"noise_reduction",
"enhancement"
])@processed_image = processor.process(@raw_image)
Advanced image loading
loader = ImageLoader(
target_size=(224, 224),
color_mode="RGB",
interpolation="bilinear"
)@loaded_image = loader.load("@raw_image")
Image Analysis & Features
from tuskvision.analysis import ImageAnalyzer, FeatureExtractor
from tuskvision.fujsen import @analyze_image, @extract_featuresBasic image analysis
analyzer = ImageAnalyzer()
@analysis = analyzer.analyze(@raw_image, features=[
"brightness",
"contrast",
"sharpness",
"color_distribution",
"texture"
])FUJSEN-powered image analysis
@image_analysis = @analyze_image(
image="@raw_image",
analysis_types=["quality", "composition", "aesthetics"],
confidence_threshold=0.8
)Feature extraction
extractor = FeatureExtractor(
model="tusk-vision-features-v1",
feature_dim=2048
)@features = extractor.extract(@processed_image)
Advanced Vision Models
Object Detection & Recognition
from tuskvision.detection import ObjectDetector, RecognitionEngine
from tuskvision.fujsen import @detect_objects, @recognize_objectsObject detector
detector = ObjectDetector(
model="tusk-detector-v1",
confidence_threshold=0.5,
nms_threshold=0.4
)@detections = detector.detect(@raw_image)
FUJSEN-powered object detection
@objects = @detect_objects(
image="@raw_image",
classes=["person", "car", "building", "animal"],
model="tusk-detector-advanced",
include_bbox=True
)Object recognition
recognizer = RecognitionEngine(
model="tusk-recognizer-v1",
top_k=5
)@recognitions = recognizer.recognize(@detections)
FUJSEN object recognition
@recognized_objects = @recognize_objects(
detections="@detections",
model="tusk-recognizer-v2",
include_confidence=True
)
Image Classification & Categorization
from tuskvision.classification import ImageClassifier, CategoryPredictor
from tuskvision.fujsen import @classify_image, @categorize_imagesImage classifier
classifier = ImageClassifier(
model="tusk-classifier-v1",
categories=["nature", "urban", "portrait", "abstract"],
confidence_threshold=0.7
)@classification = classifier.classify(@raw_image)
FUJSEN-powered classification
@image_category = @classify_image(
image="@raw_image",
categories=["product", "scene", "object", "text"],
model="tusk-intent-classifier"
)Batch image categorization
@image_categories = @categorize_images(
images="@image_batch",
categories=["indoor", "outdoor", "day", "night"],
batch_size=16
)
Vision Pipelines
End-to-End Vision Pipeline
from tuskvision.pipeline import VisionPipeline
from tuskvision.fujsen import @process_vision_pipelineComplete vision pipeline
pipeline = VisionPipeline([
"image_loading",
"preprocessing",
"feature_extraction",
"detection",
"classification",
"post_processing",
"output_generation"
])Execute pipeline
@pipeline_result = pipeline.execute(
config={
"input": "@raw_image",
"tasks": ["detection", "classification", "segmentation"],
"output_format": "json"
}
)FUJSEN-powered pipeline
@vision_result = @process_vision_pipeline(
image="@raw_image",
pipeline="comprehensive",
include_metadata=True
)
Real-time Vision Processing
from tuskvision.streaming import StreamingVisionPipeline
from tuskvision.fujsen import @stream_vision_analysisStreaming vision pipeline
stream_pipeline = StreamingVisionPipeline(
model="@model",
frame_rate=30,
processing_window=10,
real_time=True
)Process streaming video
@stream_analysis = stream_pipeline.process_stream(
@video_stream,
output_format="json"
)Real-time vision analysis
@real_time_analysis = @stream_vision_analysis(
video_stream="@video_stream",
analysis_types=["detection", "tracking", "recognition"],
latency_threshold=50 # ms
)
Advanced Vision Features
Image Segmentation
from tuskvision.segmentation import ImageSegmenter, MaskGenerator
from tuskvision.fujsen import @segment_image, @generate_masksImage segmentation
segmenter = ImageSegmenter(
model="tusk-segmenter-v1",
segmentation_type="semantic",
num_classes=21
)@segmentation = segmenter.segment(@raw_image)
FUJSEN-powered segmentation
@segments = @segment_image(
image="@raw_image",
type="instance",
model="tusk-segmenter-advanced",
include_masks=True
)Mask generation
mask_generator = MaskGenerator()
@masks = mask_generator.generate(@segmentation)FUJSEN mask generation
@generated_masks = @generate_masks(
segmentation="@segmentation",
format="binary",
include_overlay=True
)
Face Detection & Recognition
from tuskvision.faces import FaceDetector, FaceRecognizer
from tuskvision.fujsen import @detect_faces, @recognize_facesFace detection
face_detector = FaceDetector(
model="tusk-face-detector-v1",
min_face_size=20,
confidence_threshold=0.8
)@faces = face_detector.detect(@raw_image)
FUJSEN face detection
@detected_faces = @detect_faces(
image="@raw_image",
model="tusk-face-detector-advanced",
include_landmarks=True,
include_attributes=True
)Face recognition
face_recognizer = FaceRecognizer(
model="tusk-face-recognizer-v1",
database="@face_database",
similarity_threshold=0.8
)@recognized_faces = face_recognizer.recognize(@faces)
FUJSEN face recognition
@face_recognition = @recognize_faces(
faces="@detected_faces",
database="@face_database",
model="tusk-face-recognizer-v2"
)
Optical Character Recognition (OCR)
from tuskvision.ocr import TextDetector, TextRecognizer
from tuskvision.fujsen import @detect_text, @recognize_textText detection
text_detector = TextDetector(
model="tusk-text-detector-v1",
min_text_size=10,
confidence_threshold=0.7
)@text_regions = text_detector.detect(@raw_image)
FUJSEN text detection
@detected_text = @detect_text(
image="@raw_image",
model="tusk-text-detector-advanced",
languages=["en", "es", "fr"],
include_bbox=True
)Text recognition
text_recognizer = TextRecognizer(
model="tusk-text-recognizer-v1",
languages=["en", "es", "fr"],
post_process=True
)@recognized_text = text_recognizer.recognize(@text_regions)
FUJSEN text recognition
@ocr_result = @recognize_text(
text_regions="@detected_text",
model="tusk-text-recognizer-v2",
include_confidence=True
)
Vision AI & Intelligence
Scene Understanding
from tuskvision.scene import SceneAnalyzer, ContextUnderstanding
from tuskvision.fujsen import @analyze_scene, @understand_contextScene analysis
scene_analyzer = SceneAnalyzer(
model="tusk-scene-v1",
include_objects=True,
include_relationships=True
)@scene_analysis = scene_analyzer.analyze(@raw_image)
FUJSEN scene analysis
@scene_understanding = @analyze_scene(
image="@raw_image",
model="tusk-scene-advanced",
include_context=True,
include_actions=True
)Context understanding
context_analyzer = ContextUnderstanding()
@context = context_analyzer.understand(@scene_analysis)FUJSEN context understanding
@context_result = @understand_context(
scene="@scene_analysis",
model="tusk-context-v1",
include_reasoning=True
)
Visual Question Answering
from tuskvision.vqa import VisualQA, QuestionAnswerer
from tuskvision.fujsen import @answer_visual_questionVisual question answering
vqa_system = VisualQA(
model="tusk-vqa-v1",
max_answer_length=20,
confidence_threshold=0.7
)@answer = vqa_system.answer(
image="@raw_image",
question="@question"
)
FUJSEN VQA
@vqa_result = @answer_visual_question(
image="@raw_image",
question="@question",
model="tusk-vqa-advanced",
include_confidence=True
)
Vision with TuskLang Ecosystem
Integration with TuskDB
from tuskvision.storage import TuskDBStorage
from tuskvision.fujsen import @store_vision_result, @load_vision_modelStore vision results in TuskDB
@vision_storage = TuskDBStorage(
database="vision_results",
collection="image_analysis"
)@store_vision_result = @store_vision_result(
image="@raw_image",
analysis="@analysis",
metadata={
"timestamp": "@timestamp",
"model_version": "tusk-vision-v1.2",
"processing_time": 0.8
}
)
Load vision models from TuskDB
@loaded_model = @load_vision_model(
model_name="tusk-detector-v2",
version="latest"
)
Vision with FUJSEN Intelligence
from tuskvision.fujsen import @vision_intelligence, @smart_image_processingFUJSEN-powered vision intelligence
@intelligent_analysis = @vision_intelligence(
image="@raw_image",
context="@context",
intelligence_level="advanced",
include_reasoning=True
)Smart image processing
@smart_processing = @smart_image_processing(
image="@raw_image",
tasks=["detection", "classification", "segmentation"],
adaptive_processing=True,
quality_threshold=0.9
)
Best Practices
Performance Optimization
GPU acceleration
import torch
if torch.cuda.is_available():
model = model.cuda()
image = image.cuda()Batch processing
from tuskvision.optimization import BatchProcessorbatch_processor = BatchProcessor(
model="@model",
batch_size=16,
max_workers=4
)
@batch_results = batch_processor.process_batch(@images)
Model quantization
from tuskvision.optimization import ModelQuantizer
quantizer = ModelQuantizer(
model="@trained_model",
quantization="int8"
)
@quantized_model = quantizer.quantize()
Quality Assurance
from tuskvision.quality import VisionQualityChecker
from tuskvision.validation import ImageValidatorQuality checking
quality_checker = VisionQualityChecker(
min_confidence=0.8,
max_processing_time=1.0,
quality_metrics=["accuracy", "precision", "recall"]
)@quality_report = quality_checker.check(@vision_result)
Image validation
validator = ImageValidator()
@validation_result = validator.validate(
image="@raw_image",
checks=["format", "size", "quality", "content"]
)
Example: Product Recognition System
Complete product recognition system
from tuskvision import *Load and preprocess product images
@product_images = @load_image("products/*.jpg")
@processed_images = @preprocess_image(@product_images)Detect and classify products
@product_detections = @detect_objects(
image="@processed_images",
classes=["product", "package", "label"],
model="tusk-product-detector"
)@product_classifications = @classify_image(
image="@processed_images",
categories=["electronics", "clothing", "food", "books"],
model="tusk-product-classifier"
)
Extract product features
@product_features = @extract_features(
image="@processed_images",
model="tusk-product-features"
)Store results in TuskDB
@store_product_analysis = @store_vision_result(
images="@processed_images",
analysis={
"detections": "@product_detections",
"classifications": "@product_classifications",
"features": "@product_features"
}
)
Conclusion
TuskLang's Python SDK provides a comprehensive computer vision ecosystem that integrates seamlessly with the revolutionary FUJSEN intelligence system. From basic image processing to advanced object detection and recognition, TuskLang makes computer vision accessible, powerful, and production-ready.
The integration with TuskDB, FlexEquil distributed computing, and the FUJSEN intelligence system creates a unique vision platform that scales from simple image analysis to enterprise-grade computer vision systems. Whether you're building product recognition systems, surveillance applications, or autonomous vehicles, TuskLang provides the tools and infrastructure you need to succeed.
Embrace the future of computer vision with TuskLang - where vision meets revolutionary technology.