🐍 IoT & Edge Computing with TuskLang Python SDK

Python Documentation

IoT & Edge Computing with TuskLang Python SDK

Overview

TuskLang's Python SDK provides revolutionary IoT and edge computing capabilities that enable seamless device management, real-time data processing, and intelligent edge applications. From basic sensor data collection to advanced edge AI, TuskLang makes IoT development accessible, powerful, and production-ready.

Installation & Setup

Core IoT Dependencies

Install TuskLang Python SDK with IoT extensions

pip install tuskiot[full]

Or install specific IoT components

pip install tuskiot[raspberry] # Raspberry Pi integration pip install tuskiot[arduino] # Arduino integration pip install tuskiot[sensors] # Sensor libraries pip install tuskiot[edge] # Edge computing

Environment Configuration

peanu.tsk configuration for IoT workloads

iot_config = { "devices": { "raspberry_pi": { "enabled": true, "gpio_pins": [17, 18, 27, 22], "i2c_addresses": ["0x48", "0x76"] }, "arduino": { "enabled": true, "serial_port": "/dev/ttyUSB0", "baud_rate": 9600 } }, "edge_computing": { "enabled": true, "local_processing": true, "cloud_sync": true, "offline_mode": true }, "fujsen_integration": { "enable_intelligence": true, "real_time_processing": true, "predictive_analytics": true } }

Basic IoT Operations

Device Management

from tuskiot import DeviceManager, SensorManager
from tuskiot.fujsen import @register_device, @discover_devices

Device manager

device_manager = DeviceManager() @device = device_manager.register_device( device_id="sensor_001", device_type="temperature_sensor", location="room_101", capabilities=["temperature", "humidity"] )

FUJSEN device registration

@registered_device = @register_device( device_id="edge_device_001", device_type="raspberry_pi", location="factory_floor", capabilities=["sensors", "processing", "communication"] )

Device discovery

@discovered_devices = @discover_devices( network="local", device_types=["sensor", "actuator", "gateway"], timeout=30 )

Sensor management

sensor_manager = SensorManager() @sensors = sensor_manager.get_sensors("@device")

Data Collection & Processing

from tuskiot.data import DataCollector, DataProcessor
from tuskiot.fujsen import @collect_data, @process_sensor_data

Data collection

collector = DataCollector( device="@device", sampling_rate=1.0, # Hz buffer_size=1000 )

@raw_data = collector.collect_data()

FUJSEN data collection

@sensor_data = @collect_data( device="@device", sensors=["temperature", "humidity", "pressure"], duration=3600, # 1 hour interval=1.0 )

Data processing

processor = DataProcessor() @processed_data = processor.process( data="@raw_data", operations=["filter", "normalize", "aggregate"] )

FUJSEN data processing

@processed_sensor_data = @process_sensor_data( data="@sensor_data", operations=["outlier_detection", "smoothing", "feature_extraction"], real_time=True )

Edge Computing Features

Local Processing & Analytics

from tuskiot.edge import EdgeProcessor, LocalAnalytics
from tuskiot.fujsen import @edge_process, @local_analytics

Edge processor

edge_processor = EdgeProcessor( device="@device", processing_power="medium", memory_limit="512MB" )

@edge_result = edge_processor.process( data="@raw_data", algorithms=["anomaly_detection", "prediction", "classification"] )

FUJSEN edge processing

@edge_processing = @edge_process( data="@sensor_data", algorithms=["ml_inference", "data_compression", "feature_extraction"], device="@device" )

Local analytics

analytics = LocalAnalytics() @local_insights = analytics.analyze( data="@processed_data", metrics=["trends", "anomalies", "correlations"] )

FUJSEN local analytics

@local_analysis = @local_analytics( data="@processed_data", analysis_types=["trend_analysis", "anomaly_detection", "predictive_modeling"], real_time=True )

Edge AI & Machine Learning

from tuskiot.ai import EdgeAI, ModelManager
from tuskiot.fujsen import @edge_ai_inference, @train_edge_model

Edge AI

edge_ai = EdgeAI( device="@device", model_type="tensorflow_lite", optimization="quantization" )

@ai_result = edge_ai.inference( data="@processed_data", model="@trained_model" )

FUJSEN edge AI inference

@edge_inference = @edge_ai_inference( data="@sensor_data", model="@ml_model", device="@device", real_time=True )

Model management

model_manager = ModelManager() @edge_model = model_manager.deploy_model( model="@trained_model", device="@device", optimization="edge_optimized" )

FUJSEN edge model training

@edge_training = @train_edge_model( data="@local_data", model_type="regression", target="temperature_prediction", device="@device" )

Advanced IoT Features

Real-time Monitoring & Alerts

from tuskiot.monitoring import DeviceMonitor, AlertManager
from tuskiot.fujsen import @monitor_device, @send_alert

Device monitoring

monitor = DeviceMonitor( device="@device", metrics=["temperature", "humidity", "battery", "signal_strength"] )

@monitoring_data = monitor.start_monitoring()

FUJSEN device monitoring

@device_monitor = @monitor_device( device="@device", metrics=["temperature", "humidity", "pressure"], threshold_alerts=True, real_time=True )

Alert management

alert_manager = AlertManager() @alert = alert_manager.create_alert( condition="temperature > 30", action="send_notification", priority="high" )

FUJSEN alert sending

@alert_sent = @send_alert( device="@device", alert_type="temperature_high", message="Temperature exceeded threshold", priority="high" )

Device Communication & Networking

from tuskiot.communication import DeviceCommunication, NetworkManager
from tuskiot.fujsen import @send_command, @receive_data

Device communication

communication = DeviceCommunication( protocol="mqtt", broker="localhost", port=1883 )

@connection = communication.connect("@device")

FUJSEN command sending

@command_sent = @send_command( device="@device", command="set_temperature_threshold", parameters={"threshold": 25.0} )

Data reception

@received_data = @receive_data( device="@device", data_types=["sensor_data", "status_updates"], real_time=True )

Network management

network_manager = NetworkManager() @network_status = network_manager.get_network_status("@device")

IoT Data Pipelines

End-to-End IoT Pipeline

from tuskiot.pipeline import IoTPipeline
from tuskiot.fujsen import @process_iot_pipeline

Complete IoT pipeline

pipeline = IoTPipeline([ "device_discovery", "data_collection", "edge_processing", "local_analytics", "cloud_sync", "alert_generation" ])

Execute pipeline

@pipeline_result = pipeline.execute( config={ "devices": "@discovered_devices", "processing": "edge", "analytics": "real_time", "sync": "cloud" } )

FUJSEN IoT pipeline

@iot_result = @process_iot_pipeline( devices="@discovered_devices", pipeline="comprehensive", include_analytics=True )

Data Synchronization

from tuskiot.sync import DataSynchronizer, CloudSync
from tuskiot.fujsen import @sync_data, @backup_device_data

Data synchronization

synchronizer = DataSynchronizer( local_storage="@device", cloud_storage="tuskdb", sync_interval=300 # 5 minutes )

@sync_result = synchronizer.sync_data("@processed_data")

FUJSEN data sync

@data_sync = @sync_data( device="@device", data="@processed_data", destination="cloud", compression=True )

Cloud sync

cloud_sync = CloudSync( cloud_provider="tuskdb", bucket="iot_data", encryption=True )

@cloud_backup = @backup_device_data( device="@device", data="@local_data", cloud_storage="tuskdb", retention_days=30 )

IoT Security & Privacy

Device Security

from tuskiot.security import DeviceSecurity, EncryptionManager
from tuskiot.fujsen import @secure_device, @encrypt_data

Device security

security = DeviceSecurity( device="@device", encryption="aes256", authentication="certificate_based" )

@security_status = security.secure_device()

FUJSEN device security

@device_security = @secure_device( device="@device", security_level="high", encryption="aes256", authentication=True )

Data encryption

encryption_manager = EncryptionManager() @encrypted_data = encryption_manager.encrypt("@sensor_data")

FUJSEN data encryption

@encrypted_sensor_data = @encrypt_data( data="@sensor_data", algorithm="aes256", key_management="automatic" )

Privacy Protection

from tuskiot.privacy import PrivacyManager, DataAnonymizer
from tuskiot.fujsen import @anonymize_data, @protect_privacy

Privacy management

privacy_manager = PrivacyManager() @privacy_status = privacy_manager.protect_privacy("@device")

FUJSEN privacy protection

@privacy_protection = @protect_privacy( device="@device", data_types=["personal", "sensitive"], anonymization=True )

Data anonymization

anonymizer = DataAnonymizer() @anonymized_data = anonymizer.anonymize("@sensor_data")

FUJSEN data anonymization

@anonymized_sensor_data = @anonymize_data( data="@sensor_data", anonymization_level="high", preserve_utility=True )

IoT with TuskLang Ecosystem

Integration with TuskDB

from tuskiot.storage import TuskDBStorage
from tuskiot.fujsen import @store_iot_data, @load_device_config

Store IoT data in TuskDB

@iot_storage = TuskDBStorage( database="iot_data", collection="sensor_readings" )

@store_data = @store_iot_data( device="@device", data="@sensor_data", metadata={ "timestamp": "@timestamp", "location": "@device.location", "device_type": "@device.type" } )

Load device configuration

@device_config = @load_device_config( device_id="@device.id", config_type="operational" )

IoT with FUJSEN Intelligence

from tuskiot.fujsen import @iot_intelligence, @smart_device_management

FUJSEN-powered IoT intelligence

@intelligent_analysis = @iot_intelligence( device="@device", data="@sensor_data", intelligence_level="advanced", include_predictions=True )

Smart device management

@smart_management = @smart_device_management( device="@device", management_types=["automated", "predictive", "adaptive"], optimization=True )

Best Practices

Performance Optimization

from tuskiot.optimization import DeviceOptimizer, PowerManager
from tuskiot.fujsen import @optimize_device, @manage_power

Device optimization

optimizer = DeviceOptimizer() @optimized_device = optimizer.optimize("@device")

FUJSEN device optimization

@device_optimization = @optimize_device( device="@device", optimization_types=["power", "performance", "battery"], adaptive=True )

Power management

power_manager = PowerManager() @power_status = power_manager.manage_power("@device")

FUJSEN power management

@power_management = @manage_power( device="@device", power_mode="adaptive", battery_optimization=True )

Reliability & Fault Tolerance

from tuskiot.reliability import ReliabilityManager, FaultTolerance
from tuskiot.fujsen import @ensure_reliability, @handle_faults

Reliability management

reliability_manager = ReliabilityManager() @reliability_status = reliability_manager.ensure_reliability("@device")

FUJSEN reliability

@device_reliability = @ensure_reliability( device="@device", reliability_level="high", fault_tolerance=True )

Fault tolerance

fault_tolerance = FaultTolerance() @fault_handling = fault_tolerance.handle_faults("@device")

FUJSEN fault handling

@fault_management = @handle_faults( device="@device", fault_types=["hardware", "software", "network"], auto_recovery=True )

Example: Smart Home IoT System

Complete smart home IoT system

from tuskiot import *

Discover and register devices

@home_devices = @discover_devices( network="home_wifi", device_types=["sensor", "actuator", "smart_plug"] )

@registered_devices = @register_device( devices="@home_devices", location="home", capabilities=["automation", "monitoring"] )

Set up monitoring and automation

@monitoring = @monitor_device( devices="@registered_devices", metrics=["temperature", "humidity", "motion", "power_consumption"], real_time=True )

@automation = @edge_process( data="@monitoring", algorithms=["comfort_optimization", "energy_saving", "security_monitoring"], devices="@registered_devices" )

Cloud sync and analytics

@cloud_sync = @sync_data( devices="@registered_devices", data="@automation", destination="tuskdb" )

@analytics = @local_analytics( data="@automation", analysis_types=["energy_optimization", "comfort_analysis", "security_insights"] )

Conclusion

TuskLang's Python SDK provides a comprehensive IoT and edge computing ecosystem that enables seamless device management, real-time data processing, and intelligent edge applications. From basic sensor data collection to advanced edge AI, TuskLang makes IoT development accessible, powerful, and production-ready.

The integration with TuskDB, FUJSEN intelligence, and the broader TuskLang ecosystem creates a unique IoT platform that scales from simple sensor networks to enterprise-grade edge computing systems. Whether you're building smart homes, industrial IoT, or autonomous systems, TuskLang provides the tools and infrastructure you need to succeed.

Embrace the future of IoT and edge computing with TuskLang - where connected devices meet revolutionary technology.