🐍 Business Intelligence with TuskLang Python SDK

Python Documentation

Business Intelligence with TuskLang Python SDK

Overview

TuskLang's Python SDK provides revolutionary business intelligence capabilities that enable seamless data analysis, reporting, and decision-making. From basic analytics to advanced predictive modeling, TuskLang makes business intelligence accessible, powerful, and production-ready.

Installation & Setup

Core BI Dependencies

Install TuskLang Python SDK with BI extensions

pip install tuskbi[full]

Or install specific BI components

pip install tuskbi[analytics] # Analytics engine pip install tuskbi[reporting] # Reporting framework pip install tuskbi[visualization] # Data visualization pip install tuskbi[dashboard] # Dashboard creation

Environment Configuration

peanu.tsk configuration for BI workloads

bi_config = { "analytics": { "engine": "tusk_analytics", "cache_enabled": true, "parallel_processing": true, "memory_limit": "8GB" }, "reporting": { "engine": "tusk_reports", "template_engine": "jinja2", "export_formats": ["pdf", "excel", "html", "csv"] }, "visualization": { "engine": "plotly", "interactive": true, "responsive": true, "theme": "tusk_theme" }, "fujsen_integration": { "enable_intelligence": true, "predictive_analytics": true, "natural_language_queries": true } }

Basic BI Operations

Data Analysis & Processing

from tuskbi import DataAnalyzer, AnalyticsEngine
from tuskbi.fujsen import @analyze_data, @process_analytics

Data analyzer

analyzer = DataAnalyzer() @analysis_result = analyzer.analyze( data="@business_data", metrics=["@kpi_metrics", "@performance_indicators"] )

FUJSEN data analysis

@data_analysis = @analyze_data( data="@sales_data", analysis_types=["trend_analysis", "correlation_analysis", "anomaly_detection"], time_period="monthly" )

Analytics engine

analytics_engine = AnalyticsEngine() @analytics_result = analytics_engine.process( data="@raw_data", algorithms=["@statistical_analysis", "@predictive_modeling"] )

FUJSEN analytics processing

@processed_analytics = @process_analytics( data="@business_data", analytics_pipeline=["@data_cleaning", "@feature_engineering", "@modeling"], output_format="structured" )

KPI & Metrics Management

from tuskbi.metrics import KPIManager, MetricsCalculator
from tuskbi.fujsen import @calculate_kpis, @track_metrics

KPI manager

kpi_manager = KPIManager() @kpi_dashboard = kpi_manager.create_dashboard( kpis=["@revenue_kpi", "@customer_satisfaction_kpi", "@operational_efficiency_kpi"], refresh_rate="real_time" )

FUJSEN KPI calculation

@calculated_kpis = @calculate_kpis( data="@business_data", kpi_definitions="@kpi_configurations", calculation_frequency="daily" )

Metrics calculator

calculator = MetricsCalculator() @business_metrics = calculator.calculate_metrics( data="@performance_data", metric_types=["@financial_metrics", "@operational_metrics", "@customer_metrics"] )

FUJSEN metrics tracking

@tracked_metrics = @track_metrics( metrics="@business_metrics", tracking_period="monthly", alert_thresholds="@metric_thresholds" )

Advanced BI Features

Predictive Analytics

from tuskbi.predictive import PredictiveEngine, ForecastingModel
from tuskbi.fujsen import @predict_trends, @forecast_future

Predictive engine

predictive_engine = PredictiveEngine() @prediction_result = predictive_engine.predict( data="@historical_data", target_variable="@target_metric", prediction_horizon="3_months" )

FUJSEN trend prediction

@trend_prediction = @predict_trends( data="@time_series_data", prediction_model="arima", confidence_interval=0.95 )

Forecasting model

forecasting = ForecastingModel() @forecast_result = forecasting.forecast( data="@sales_data", forecast_period="12_months", seasonality=True )

FUJSEN future forecasting

@future_forecast = @forecast_future( data="@business_data", forecast_type="demand_forecasting", model_accuracy_threshold=0.85 )

Business Reporting

from tuskbi.reporting import ReportGenerator, ReportScheduler
from tuskbi.fujsen import @generate_report, @schedule_reports

Report generator

report_generator = ReportGenerator() @business_report = report_generator.generate( template="@report_template", data="@report_data", format="pdf" )

FUJSEN report generation

@generated_report = @generate_report( report_type="monthly_business_review", data_sources=["@sales_data", "@financial_data", "@operational_data"], output_format="interactive_html" )

Report scheduler

scheduler = ReportScheduler() @scheduled_report = scheduler.schedule_report( report="@business_report", schedule="monthly", recipients="@stakeholders" )

FUJSEN report scheduling

@report_schedule = @schedule_reports( reports=["@monthly_report", "@quarterly_report", "@annual_report"], delivery_method="email", automation=True )

Data Visualization

from tuskbi.visualization import ChartGenerator, DashboardBuilder
from tuskbi.fujsen import @create_chart, @build_dashboard

Chart generator

chart_generator = ChartGenerator() @sales_chart = chart_generator.create_chart( data="@sales_data", chart_type="line", x_axis="@time_period", y_axis="@sales_amount" )

FUJSEN chart creation

@created_chart = @create_chart( data="@business_data", chart_type="interactive_dashboard", visualization_library="plotly", responsive=True )

Dashboard builder

dashboard_builder = DashboardBuilder() @business_dashboard = dashboard_builder.build_dashboard( charts=["@sales_chart", "@revenue_chart", "@customer_chart"], layout="grid", theme="tusk_theme" )

FUJSEN dashboard building

@built_dashboard = @build_dashboard( components=["@kpi_widgets", "@charts", "@tables"], layout_type="responsive", interactive_features=True )

Real-time Analytics

Streaming Analytics

from tuskbi.streaming import StreamingAnalytics, RealTimeProcessor
from tuskbi.fujsen import @stream_analytics, @process_real_time

Streaming analytics

streaming = StreamingAnalytics() @stream_result = streaming.process_stream( data_stream="@real_time_data", analytics_window="5_minutes", processing_type="continuous" )

FUJSEN streaming analytics

@streaming_analytics = @stream_analytics( data_stream="@business_stream", analytics_types=["@real_time_kpis", "@anomaly_detection", "@trend_analysis"], latency_threshold=100 # ms )

Real-time processor

real_time_processor = RealTimeProcessor() @real_time_result = real_time_processor.process( data="@live_data", processing_rules="@real_time_rules" )

FUJSEN real-time processing

@real_time_processing = @process_real_time( data="@live_business_data", processing_pipeline=["@data_validation", "@kpi_calculation", "@alert_generation"], output_stream="@real_time_dashboard" )

Interactive Dashboards

from tuskbi.dashboard import InteractiveDashboard, WidgetManager
from tuskbi.fujsen import @create_dashboard, @update_widgets

Interactive dashboard

@interactive_dashboard = @create_dashboard( dashboard_type="executive_dashboard", widgets=["@kpi_widgets", "@chart_widgets", "@table_widgets"], interactivity_level="high" )

Widget manager

widget_manager = WidgetManager() @dashboard_widgets = widget_manager.create_widgets( widget_types=["@kpi_widget", "@chart_widget", "@table_widget"], data_sources="@widget_data_sources" )

FUJSEN widget updates

@widget_updates = @update_widgets( dashboard="@interactive_dashboard", widgets="@dashboard_widgets", update_frequency="real_time" )

Advanced Analytics

Statistical Analysis

from tuskbi.statistics import StatisticalAnalyzer, HypothesisTester
from tuskbi.fujsen import @perform_statistical_analysis, @test_hypothesis

Statistical analyzer

statistical_analyzer = StatisticalAnalyzer() @statistical_result = statistical_analyzer.analyze( data="@business_data", analysis_types=["@descriptive_statistics", "@inferential_statistics"] )

FUJSEN statistical analysis

@statistical_analysis = @perform_statistical_analysis( data="@analytics_data", statistical_tests=["@t_test", "@anova", "@correlation_analysis"], confidence_level=0.95 )

Hypothesis tester

hypothesis_tester = HypothesisTester() @hypothesis_result = hypothesis_tester.test_hypothesis( data="@test_data", hypothesis="@business_hypothesis", significance_level=0.05 )

FUJSEN hypothesis testing

@hypothesis_test = @test_hypothesis( data="@business_data", hypothesis_type="a_b_testing", statistical_power=0.8 )

Machine Learning for BI

from tuskbi.ml import MLForBI, ModelManager
from tuskbi.fujsen import @apply_ml_bi, @train_bi_model

ML for BI

ml_bi = MLForBI() @ml_result = ml_bi.apply_ml( data="@business_data", ml_models=["@clustering_model", "@classification_model", "@regression_model"] )

FUJSEN ML application

@ml_application = @apply_ml_bi( data="@business_data", ml_pipeline=["@data_preprocessing", "@feature_selection", "@model_training"], business_objective="@business_goal" )

Model manager

model_manager = ModelManager() @bi_model = model_manager.train_model( data="@training_data", model_type="business_intelligence", evaluation_metrics="@business_metrics" )

FUJSEN model training

@trained_model = @train_bi_model( data="@business_data", model_type="predictive_analytics", target_variable="@business_target" )

BI with TuskLang Ecosystem

Integration with TuskDB

from tuskbi.storage import TuskDBStorage
from tuskbi.fujsen import @store_bi_data, @load_analytics_data

Store BI data in TuskDB

@bi_storage = TuskDBStorage( database="business_intelligence", collection="analytics_results" )

@store_analytics = @store_bi_data( data="@analytics_results", metadata={ "analysis_type": "@analysis_type", "timestamp": "@timestamp", "data_source": "@data_source" } )

Load analytics data

@analytics_data = @load_analytics_data( data_types=["@kpi_data", "@report_data", "@dashboard_data"], filters="@data_filters" )

BI with FUJSEN Intelligence

from tuskbi.fujsen import @bi_intelligence, @smart_analytics

FUJSEN-powered BI intelligence

@intelligent_bi = @bi_intelligence( data="@business_data", intelligence_level="advanced", include_insights=True )

Smart analytics

@smart_analytics_result = @smart_analytics( data="@business_data", analytics_type="intelligent", automation_level="high" )

Best Practices

Performance Optimization

from tuskbi.optimization import BIOptimizer
from tuskbi.fujsen import @optimize_bi, @cache_analytics

BI optimization

@optimization = @optimize_bi( bi_system="@bi_system", optimization_types=["@query_optimization", "@cache_optimization", "@processing_optimization"] )

Analytics caching

@cached_analytics = @cache_analytics( analytics="@frequently_used_analytics", cache_strategy="intelligent", cache_duration="24_hours" )

Data Quality & Governance

from tuskbi.quality import BIQualityManager
from tuskbi.fujsen import @ensure_bi_quality, @govern_bi_data

BI quality assurance

@quality_assurance = @ensure_bi_quality( data="@bi_data", quality_metrics=["@accuracy", "@completeness", "@consistency"], data_lineage=True )

BI data governance

@data_governance = @govern_bi_data( data="@business_intelligence_data", governance_policies="@bi_governance_policies", compliance_checks=True )

Example: Complete BI System

Complete business intelligence system

from tuskbi import *

Collect and analyze business data

@business_data = @load_analytics_data( data_sources=["@sales_system", "@crm_system", "@financial_system"] )

@data_analysis = @analyze_data( data="@business_data", analysis_types=["@trend_analysis", "@performance_analysis", "@predictive_analysis"] )

Calculate KPIs and metrics

@business_kpis = @calculate_kpis( data="@business_data", kpi_definitions="@business_kpi_config" )

Generate reports and dashboards

@business_report = @generate_report( report_type="executive_summary", data="@data_analysis", format="interactive_html" )

@executive_dashboard = @build_dashboard( components=["@kpi_widgets", "@trend_charts", "@performance_tables"], layout="executive_view" )

Set up real-time monitoring

@real_time_monitoring = @stream_analytics( data_stream="@live_business_data", analytics_types=["@real_time_kpis", "@anomaly_detection"] )

Store results in TuskDB

@stored_bi_data = @store_bi_data( data="@analytics_results", database="business_intelligence" )

Conclusion

TuskLang's Python SDK provides a comprehensive business intelligence ecosystem that enables seamless data analysis, reporting, and decision-making. From basic analytics to advanced predictive modeling, TuskLang makes business intelligence accessible, powerful, and production-ready.

The integration with TuskDB, FUJSEN intelligence, and the broader TuskLang ecosystem creates a unique BI platform that scales from simple reporting to complex predictive analytics. Whether you're building executive dashboards, performing statistical analysis, or implementing machine learning for business insights, TuskLang provides the tools and infrastructure you need to succeed.

Embrace the future of business intelligence with TuskLang - where data meets revolutionary technology.