🐍 Business Intelligence with TuskLang Python SDK
Business Intelligence with TuskLang Python SDK
Overview
TuskLang's Python SDK provides revolutionary business intelligence capabilities that enable seamless data analysis, reporting, and decision-making. From basic analytics to advanced predictive modeling, TuskLang makes business intelligence accessible, powerful, and production-ready.
Installation & Setup
Core BI Dependencies
Install TuskLang Python SDK with BI extensions
pip install tuskbi[full]Or install specific BI components
pip install tuskbi[analytics] # Analytics engine
pip install tuskbi[reporting] # Reporting framework
pip install tuskbi[visualization] # Data visualization
pip install tuskbi[dashboard] # Dashboard creation
Environment Configuration
peanu.tsk configuration for BI workloads
bi_config = {
"analytics": {
"engine": "tusk_analytics",
"cache_enabled": true,
"parallel_processing": true,
"memory_limit": "8GB"
},
"reporting": {
"engine": "tusk_reports",
"template_engine": "jinja2",
"export_formats": ["pdf", "excel", "html", "csv"]
},
"visualization": {
"engine": "plotly",
"interactive": true,
"responsive": true,
"theme": "tusk_theme"
},
"fujsen_integration": {
"enable_intelligence": true,
"predictive_analytics": true,
"natural_language_queries": true
}
}
Basic BI Operations
Data Analysis & Processing
from tuskbi import DataAnalyzer, AnalyticsEngine
from tuskbi.fujsen import @analyze_data, @process_analyticsData analyzer
analyzer = DataAnalyzer()
@analysis_result = analyzer.analyze(
data="@business_data",
metrics=["@kpi_metrics", "@performance_indicators"]
)FUJSEN data analysis
@data_analysis = @analyze_data(
data="@sales_data",
analysis_types=["trend_analysis", "correlation_analysis", "anomaly_detection"],
time_period="monthly"
)Analytics engine
analytics_engine = AnalyticsEngine()
@analytics_result = analytics_engine.process(
data="@raw_data",
algorithms=["@statistical_analysis", "@predictive_modeling"]
)FUJSEN analytics processing
@processed_analytics = @process_analytics(
data="@business_data",
analytics_pipeline=["@data_cleaning", "@feature_engineering", "@modeling"],
output_format="structured"
)
KPI & Metrics Management
from tuskbi.metrics import KPIManager, MetricsCalculator
from tuskbi.fujsen import @calculate_kpis, @track_metricsKPI manager
kpi_manager = KPIManager()
@kpi_dashboard = kpi_manager.create_dashboard(
kpis=["@revenue_kpi", "@customer_satisfaction_kpi", "@operational_efficiency_kpi"],
refresh_rate="real_time"
)FUJSEN KPI calculation
@calculated_kpis = @calculate_kpis(
data="@business_data",
kpi_definitions="@kpi_configurations",
calculation_frequency="daily"
)Metrics calculator
calculator = MetricsCalculator()
@business_metrics = calculator.calculate_metrics(
data="@performance_data",
metric_types=["@financial_metrics", "@operational_metrics", "@customer_metrics"]
)FUJSEN metrics tracking
@tracked_metrics = @track_metrics(
metrics="@business_metrics",
tracking_period="monthly",
alert_thresholds="@metric_thresholds"
)
Advanced BI Features
Predictive Analytics
from tuskbi.predictive import PredictiveEngine, ForecastingModel
from tuskbi.fujsen import @predict_trends, @forecast_futurePredictive engine
predictive_engine = PredictiveEngine()
@prediction_result = predictive_engine.predict(
data="@historical_data",
target_variable="@target_metric",
prediction_horizon="3_months"
)FUJSEN trend prediction
@trend_prediction = @predict_trends(
data="@time_series_data",
prediction_model="arima",
confidence_interval=0.95
)Forecasting model
forecasting = ForecastingModel()
@forecast_result = forecasting.forecast(
data="@sales_data",
forecast_period="12_months",
seasonality=True
)FUJSEN future forecasting
@future_forecast = @forecast_future(
data="@business_data",
forecast_type="demand_forecasting",
model_accuracy_threshold=0.85
)
Business Reporting
from tuskbi.reporting import ReportGenerator, ReportScheduler
from tuskbi.fujsen import @generate_report, @schedule_reportsReport generator
report_generator = ReportGenerator()
@business_report = report_generator.generate(
template="@report_template",
data="@report_data",
format="pdf"
)FUJSEN report generation
@generated_report = @generate_report(
report_type="monthly_business_review",
data_sources=["@sales_data", "@financial_data", "@operational_data"],
output_format="interactive_html"
)Report scheduler
scheduler = ReportScheduler()
@scheduled_report = scheduler.schedule_report(
report="@business_report",
schedule="monthly",
recipients="@stakeholders"
)FUJSEN report scheduling
@report_schedule = @schedule_reports(
reports=["@monthly_report", "@quarterly_report", "@annual_report"],
delivery_method="email",
automation=True
)
Data Visualization
from tuskbi.visualization import ChartGenerator, DashboardBuilder
from tuskbi.fujsen import @create_chart, @build_dashboardChart generator
chart_generator = ChartGenerator()
@sales_chart = chart_generator.create_chart(
data="@sales_data",
chart_type="line",
x_axis="@time_period",
y_axis="@sales_amount"
)FUJSEN chart creation
@created_chart = @create_chart(
data="@business_data",
chart_type="interactive_dashboard",
visualization_library="plotly",
responsive=True
)Dashboard builder
dashboard_builder = DashboardBuilder()
@business_dashboard = dashboard_builder.build_dashboard(
charts=["@sales_chart", "@revenue_chart", "@customer_chart"],
layout="grid",
theme="tusk_theme"
)FUJSEN dashboard building
@built_dashboard = @build_dashboard(
components=["@kpi_widgets", "@charts", "@tables"],
layout_type="responsive",
interactive_features=True
)
Real-time Analytics
Streaming Analytics
from tuskbi.streaming import StreamingAnalytics, RealTimeProcessor
from tuskbi.fujsen import @stream_analytics, @process_real_timeStreaming analytics
streaming = StreamingAnalytics()
@stream_result = streaming.process_stream(
data_stream="@real_time_data",
analytics_window="5_minutes",
processing_type="continuous"
)FUJSEN streaming analytics
@streaming_analytics = @stream_analytics(
data_stream="@business_stream",
analytics_types=["@real_time_kpis", "@anomaly_detection", "@trend_analysis"],
latency_threshold=100 # ms
)Real-time processor
real_time_processor = RealTimeProcessor()
@real_time_result = real_time_processor.process(
data="@live_data",
processing_rules="@real_time_rules"
)FUJSEN real-time processing
@real_time_processing = @process_real_time(
data="@live_business_data",
processing_pipeline=["@data_validation", "@kpi_calculation", "@alert_generation"],
output_stream="@real_time_dashboard"
)
Interactive Dashboards
from tuskbi.dashboard import InteractiveDashboard, WidgetManager
from tuskbi.fujsen import @create_dashboard, @update_widgetsInteractive dashboard
@interactive_dashboard = @create_dashboard(
dashboard_type="executive_dashboard",
widgets=["@kpi_widgets", "@chart_widgets", "@table_widgets"],
interactivity_level="high"
)Widget manager
widget_manager = WidgetManager()
@dashboard_widgets = widget_manager.create_widgets(
widget_types=["@kpi_widget", "@chart_widget", "@table_widget"],
data_sources="@widget_data_sources"
)FUJSEN widget updates
@widget_updates = @update_widgets(
dashboard="@interactive_dashboard",
widgets="@dashboard_widgets",
update_frequency="real_time"
)
Advanced Analytics
Statistical Analysis
from tuskbi.statistics import StatisticalAnalyzer, HypothesisTester
from tuskbi.fujsen import @perform_statistical_analysis, @test_hypothesisStatistical analyzer
statistical_analyzer = StatisticalAnalyzer()
@statistical_result = statistical_analyzer.analyze(
data="@business_data",
analysis_types=["@descriptive_statistics", "@inferential_statistics"]
)FUJSEN statistical analysis
@statistical_analysis = @perform_statistical_analysis(
data="@analytics_data",
statistical_tests=["@t_test", "@anova", "@correlation_analysis"],
confidence_level=0.95
)Hypothesis tester
hypothesis_tester = HypothesisTester()
@hypothesis_result = hypothesis_tester.test_hypothesis(
data="@test_data",
hypothesis="@business_hypothesis",
significance_level=0.05
)FUJSEN hypothesis testing
@hypothesis_test = @test_hypothesis(
data="@business_data",
hypothesis_type="a_b_testing",
statistical_power=0.8
)
Machine Learning for BI
from tuskbi.ml import MLForBI, ModelManager
from tuskbi.fujsen import @apply_ml_bi, @train_bi_modelML for BI
ml_bi = MLForBI()
@ml_result = ml_bi.apply_ml(
data="@business_data",
ml_models=["@clustering_model", "@classification_model", "@regression_model"]
)FUJSEN ML application
@ml_application = @apply_ml_bi(
data="@business_data",
ml_pipeline=["@data_preprocessing", "@feature_selection", "@model_training"],
business_objective="@business_goal"
)Model manager
model_manager = ModelManager()
@bi_model = model_manager.train_model(
data="@training_data",
model_type="business_intelligence",
evaluation_metrics="@business_metrics"
)FUJSEN model training
@trained_model = @train_bi_model(
data="@business_data",
model_type="predictive_analytics",
target_variable="@business_target"
)
BI with TuskLang Ecosystem
Integration with TuskDB
from tuskbi.storage import TuskDBStorage
from tuskbi.fujsen import @store_bi_data, @load_analytics_dataStore BI data in TuskDB
@bi_storage = TuskDBStorage(
database="business_intelligence",
collection="analytics_results"
)@store_analytics = @store_bi_data(
data="@analytics_results",
metadata={
"analysis_type": "@analysis_type",
"timestamp": "@timestamp",
"data_source": "@data_source"
}
)
Load analytics data
@analytics_data = @load_analytics_data(
data_types=["@kpi_data", "@report_data", "@dashboard_data"],
filters="@data_filters"
)
BI with FUJSEN Intelligence
from tuskbi.fujsen import @bi_intelligence, @smart_analyticsFUJSEN-powered BI intelligence
@intelligent_bi = @bi_intelligence(
data="@business_data",
intelligence_level="advanced",
include_insights=True
)Smart analytics
@smart_analytics_result = @smart_analytics(
data="@business_data",
analytics_type="intelligent",
automation_level="high"
)
Best Practices
Performance Optimization
from tuskbi.optimization import BIOptimizer
from tuskbi.fujsen import @optimize_bi, @cache_analyticsBI optimization
@optimization = @optimize_bi(
bi_system="@bi_system",
optimization_types=["@query_optimization", "@cache_optimization", "@processing_optimization"]
)Analytics caching
@cached_analytics = @cache_analytics(
analytics="@frequently_used_analytics",
cache_strategy="intelligent",
cache_duration="24_hours"
)
Data Quality & Governance
from tuskbi.quality import BIQualityManager
from tuskbi.fujsen import @ensure_bi_quality, @govern_bi_dataBI quality assurance
@quality_assurance = @ensure_bi_quality(
data="@bi_data",
quality_metrics=["@accuracy", "@completeness", "@consistency"],
data_lineage=True
)BI data governance
@data_governance = @govern_bi_data(
data="@business_intelligence_data",
governance_policies="@bi_governance_policies",
compliance_checks=True
)
Example: Complete BI System
Complete business intelligence system
from tuskbi import *Collect and analyze business data
@business_data = @load_analytics_data(
data_sources=["@sales_system", "@crm_system", "@financial_system"]
)@data_analysis = @analyze_data(
data="@business_data",
analysis_types=["@trend_analysis", "@performance_analysis", "@predictive_analysis"]
)
Calculate KPIs and metrics
@business_kpis = @calculate_kpis(
data="@business_data",
kpi_definitions="@business_kpi_config"
)Generate reports and dashboards
@business_report = @generate_report(
report_type="executive_summary",
data="@data_analysis",
format="interactive_html"
)@executive_dashboard = @build_dashboard(
components=["@kpi_widgets", "@trend_charts", "@performance_tables"],
layout="executive_view"
)
Set up real-time monitoring
@real_time_monitoring = @stream_analytics(
data_stream="@live_business_data",
analytics_types=["@real_time_kpis", "@anomaly_detection"]
)Store results in TuskDB
@stored_bi_data = @store_bi_data(
data="@analytics_results",
database="business_intelligence"
)
Conclusion
TuskLang's Python SDK provides a comprehensive business intelligence ecosystem that enables seamless data analysis, reporting, and decision-making. From basic analytics to advanced predictive modeling, TuskLang makes business intelligence accessible, powerful, and production-ready.
The integration with TuskDB, FUJSEN intelligence, and the broader TuskLang ecosystem creates a unique BI platform that scales from simple reporting to complex predictive analytics. Whether you're building executive dashboards, performing statistical analysis, or implementing machine learning for business insights, TuskLang provides the tools and infrastructure you need to succeed.
Embrace the future of business intelligence with TuskLang - where data meets revolutionary technology.