💎 🚀 TuskLang Ruby Advanced Features Guide

Ruby Documentation

🚀 TuskLang Ruby Advanced Features Guide

"We don't bow to any king" - Ruby Edition

Master the advanced features of TuskLang in Ruby. From caching and monitoring to performance optimization and machine learning integration, discover the full power of revolutionary configuration.

🔄 Advanced Caching

1. Multi-Level Caching

config/caching.tsk

$environment: @env("RAILS_ENV", "development")

[cache]

Primary cache (Redis)

primary { driver: "redis" host: @env("REDIS_HOST", "localhost") port: @env("REDIS_PORT", 6379) db: 0 ttl: "5m" }

Secondary cache (Memory)

secondary { driver: "memory" max_size: 1000 ttl: "1m" }

Distributed cache (Memcached)

distributed { driver: "memcached" servers: ["memcached1:11211", "memcached2:11211"] ttl: "10m" }

[analytics]

Multi-level cached queries

total_users: @cache.primary("5m", @query("SELECT COUNT(*) FROM users")) active_users: @cache.secondary("1m", @query("SELECT COUNT(*) FROM users WHERE active = true")) premium_users: @cache.distributed("10m", @query("SELECT COUNT(*) FROM users WHERE subscription_type = 'premium'"))

Cache with custom keys

user_stats: @cache.primary("user_stats:#{@date.today()}", "1h", @query(""" SELECT COUNT(*) as total, COUNT(CASE WHEN active = true THEN 1 END) as active, COUNT(CASE WHEN subscription_type = 'premium' THEN 1 END) as premium FROM users """))

2. Cache Invalidation Strategies

config/cache_invalidation.tsk

[cache]

Cache with automatic invalidation

user_count: @cache("5m", @query("SELECT COUNT(*) FROM users"), { invalidate_on: ["users.created", "users.deleted"], tags: ["users", "analytics"] })

order_stats: @cache("1m", @query("SELECT COUNT(*) FROM orders"), { invalidate_on: ["orders.created", "orders.updated"], tags: ["orders", "analytics"] })

Cache with manual invalidation

premium_users: @cache("10m", @query("SELECT COUNT(*) FROM users WHERE subscription_type = 'premium'"), { key: "premium_users_count", tags: ["users", "premium"] })

Cache with conditional invalidation

revenue_stats: @cache("1h", @query("SELECT SUM(amount) FROM orders"), { invalidate_if: @query("SELECT COUNT(*) FROM orders WHERE updated_at > ?", @cache.get("revenue_stats_last_update")), tags: ["orders", "revenue"] })

3. Ruby Cache Integration

app/services/cache_service.rb

class CacheService def self.primary_cache @primary_cache ||= TuskLang::Cache::RedisCache.new( host: ENV['REDIS_HOST'] || 'localhost', port: ENV['REDIS_PORT'] || 6379, db: 0 ) end def self.secondary_cache @secondary_cache ||= TuskLang::Cache::MemoryCache.new( max_size: 1000, ttl: 60 ) end def self.distributed_cache @distributed_cache ||= TuskLang::Cache::MemcachedCache.new( servers: ENV['MEMCACHED_SERVERS']&.split(',') || ['localhost:11211'] ) end def self.invalidate_by_tags(tags) primary_cache.invalidate_tags(tags) secondary_cache.invalidate_tags(tags) distributed_cache.invalidate_tags(tags) end def self.invalidate_by_pattern(pattern) primary_cache.invalidate_pattern(pattern) secondary_cache.invalidate_pattern(pattern) distributed_cache.invalidate_pattern(pattern) end end

app/controllers/api/v1/analytics_controller.rb

class Api::V1::AnalyticsController < ApplicationController def refresh_cache # Invalidate specific tags CacheService.invalidate_by_tags(['users', 'analytics']) # Invalidate by pattern CacheService.invalidate_by_pattern('user_stats:*') render json: { message: 'Cache refreshed successfully' } end end

📊 Advanced Monitoring

1. Metrics Collection

config/monitoring.tsk

$app_name: "MyApp" $environment: @env("RAILS_ENV", "development")

[monitoring] enabled: @if($environment == "production", true, false) metrics_endpoint: "/metrics" health_endpoint: "/health"

[metrics]

Application metrics

response_time: @metrics("response_time_ms", @request.response_time) request_count: @metrics("requests_total", @request.count) error_rate: @metrics("errors_total", @request.error_count)

Database metrics

db_connections: @metrics("db_connections", @query("SELECT COUNT(*) FROM pg_stat_activity")) db_query_time: @metrics("db_query_time_ms", @query.execution_time)

Cache metrics

cache_hits: @metrics("cache_hits", @cache.hits) cache_misses: @metrics("cache_misses", @cache.misses) cache_hit_rate: @metrics("cache_hit_rate", @cache.hit_rate)

Business metrics

active_users: @metrics("active_users", @query("SELECT COUNT(*) FROM users WHERE active = true")) revenue_today: @metrics("revenue_today", @query("SELECT SUM(amount) FROM orders WHERE DATE(created_at) = ?", @date.today()))

2. Health Checks

config/health_checks.tsk

[health]

Database health

database_healthy: @health.check("database", @query("SELECT 1")) redis_healthy: @health.check("redis", @cache.ping) memcached_healthy: @health.check("memcached", @cache.ping)

External service health

api_healthy: @health.check("external_api", @http("GET", "https://api.example.com/health")) payment_gateway_healthy: @health.check("payment_gateway", @http("GET", "https://payments.example.com/health"))

Custom health checks

user_service_healthy: @health.check("user_service", @query("SELECT COUNT(*) FROM users") > 0) order_service_healthy: @health.check("order_service", @query("SELECT COUNT(*) FROM orders") >= 0)

Composite health status

overall_health: @health.composite([ "database_healthy", "redis_healthy", "api_healthy" ])

3. Ruby Monitoring Integration

app/services/monitoring_service.rb

class MonitoringService def self.record_metric(name, value, tags = {}) TuskLang.config.metrics_adapter.record(name, value, tags) end def self.record_timing(name, duration, tags = {}) TuskLang.config.metrics_adapter.record_timing(name, duration, tags) end def self.increment_counter(name, tags = {}) TuskLang.config.metrics_adapter.increment(name, tags) end def self.health_check(service_name) TuskLang.config.health_adapter.check(service_name) end def self.overall_health TuskLang.config.health_adapter.overall_status end end

app/controllers/health_controller.rb

class HealthController < ApplicationController def show health_status = MonitoringService.overall_health render json: { status: health_status.healthy? ? 'healthy' : 'unhealthy', checks: health_status.checks, timestamp: Time.current } end def metrics metrics = TuskLang.config.metrics_adapter.collect render json: { metrics: metrics, timestamp: Time.current } end end

app/controllers/application_controller.rb

class ApplicationController < ActionController::Base around_action :record_metrics private def record_metrics start_time = Time.current yield duration = (Time.current - start_time) * 1000 # Convert to milliseconds MonitoringService.record_timing('request_duration', duration, { controller: controller_name, action: action_name, status: response.status }) MonitoringService.increment_counter('requests_total', { controller: controller_name, action: action_name, status: response.status }) end end

⚡ Performance Optimization

1. Query Optimization

config/optimized_queries.tsk

[analytics]

Use indexes effectively

active_users: @query(""" SELECT COUNT(*) FROM users WHERE active = true AND last_login > ? AND subscription_type IN ('basic', 'premium') """, @date.subtract("30d"))

Limit result sets

recent_orders: @query(""" SELECT id, user_id, amount, status, created_at FROM orders WHERE created_at > ? ORDER BY created_at DESC LIMIT 100 """, @date.subtract("7d"))

Use specific columns

user_summary: @query(""" SELECT id, email, first_name, last_name, subscription_type, created_at, last_login FROM users WHERE active = true """)

Aggregated queries

daily_stats: @query(""" SELECT DATE(created_at) as date, COUNT(*) as new_users, COUNT(CASE WHEN subscription_type = 'premium' THEN 1 END) as premium_signups, SUM(CASE WHEN subscription_type = 'premium' THEN 1 ELSE 0 END) as premium_count FROM users WHERE created_at > ? GROUP BY DATE(created_at) ORDER BY date DESC """, @date.subtract("30d"))

2. Connection Pooling

config/connection_pool.tsk

[database] host: "localhost" port: 5432 name: "myapp" user: "postgres" password: @env("DATABASE_PASSWORD")

[pool]

Connection pool settings

max_open_conns: @env("DB_MAX_OPEN_CONNS", 20) max_idle_conns: @env("DB_MAX_IDLE_CONNS", 10) conn_max_lifetime: @env("DB_CONN_MAX_LIFETIME", 30000) conn_max_idle_time: @env("DB_CONN_MAX_IDLE_TIME", 10000)

Read replica pool

read_replica_pool { max_open_conns: @env("DB_READ_MAX_OPEN_CONNS", 10) max_idle_conns: @env("DB_READ_MAX_IDLE_CONNS", 5) conn_max_lifetime: @env("DB_READ_CONN_MAX_LIFETIME", 30000) }

Analytics database pool

analytics_pool { max_open_conns: @env("DB_ANALYTICS_MAX_OPEN_CONNS", 5) max_idle_conns: @env("DB_ANALYTICS_MAX_IDLE_CONNS", 2) conn_max_lifetime: @env("DB_ANALYTICS_CONN_MAX_LIFETIME", 60000) }

3. Ruby Performance Integration

app/services/performance_service.rb

class PerformanceService def self.optimize_queries # Enable query logging ActiveRecord::Base.logger = Rails.logger if Rails.env.development? # Set connection pool size ActiveRecord::Base.connection_pool.disconnect! ActiveRecord::Base.establish_connection( Rails.application.config.database_configuration[Rails.env].merge( pool: TuskLang.config['pool']['max_open_conns'] ) ) end def self.monitor_query_performance queries = [] ActiveSupport::Notifications.subscribe('sql.active_record') do |*args| event = ActiveSupport::Notifications::Event.new(*args) queries << { sql: event.payload[:sql], duration: event.duration, name: event.payload[:name] } end queries end def self.slow_query_alert(threshold = 1000) queries = monitor_query_performance slow_queries = queries.select { |q| q[:duration] > threshold } if slow_queries.any? Rails.logger.warn("Slow queries detected: #{slow_queries}") # Send alert to monitoring service MonitoringService.record_metric('slow_queries', slow_queries.count) end end end

🤖 Machine Learning Integration

1. Predictive Configuration

config/ml_config.tsk

[ml] enabled: @if($environment == "production", true, false) model_path: "/models/config_predictor.pkl"

[predictions]

Predict optimal cache TTL

optimal_cache_ttl: @learn("cache_ttl", "5m", { features: ["user_count", "request_rate", "cache_hit_rate"], algorithm: "random_forest" })

Predict database connection pool size

optimal_pool_size: @learn("pool_size", 20, { features: ["concurrent_users", "query_complexity", "response_time"], algorithm: "gradient_boosting" })

Predict rate limiting

optimal_rate_limit: @learn("rate_limit", 1000, { features: ["user_count", "api_calls", "error_rate"], algorithm: "linear_regression" })

Predict scaling decisions

should_scale: @learn("scaling_decision", false, { features: ["cpu_usage", "memory_usage", "response_time", "error_rate"], algorithm: "decision_tree" })

2. Adaptive Configuration

config/adaptive.tsk

[adaptive]

Adaptive cache TTL based on usage patterns

cache_ttl: @optimize("cache_ttl", "5m", { metric: "cache_hit_rate", target: 0.8, min_value: "1m", max_value: "1h" })

Adaptive connection pool size

pool_size: @optimize("pool_size", 20, { metric: "db_connection_wait_time", target: 100, # milliseconds min_value: 5, max_value: 100 })

Adaptive rate limiting

rate_limit: @optimize("rate_limit", 1000, { metric: "response_time", target: 200, # milliseconds min_value: 100, max_value: 10000 })

Adaptive worker count

worker_count: @optimize("worker_count", 4, { metric: "request_queue_length", target: 0, min_value: 1, max_value: 16 })

3. Ruby ML Integration

app/services/ml_service.rb

class MLService def self.predict_cache_ttl features = { user_count: User.count, request_rate: MonitoringService.get_metric('requests_per_second'), cache_hit_rate: MonitoringService.get_metric('cache_hit_rate') } TuskLang.config.ml_adapter.predict('cache_ttl', features) end def self.optimize_pool_size features = { concurrent_users: MonitoringService.get_metric('concurrent_users'), query_complexity: MonitoringService.get_metric('avg_query_complexity'), response_time: MonitoringService.get_metric('avg_response_time') } TuskLang.config.ml_adapter.predict('pool_size', features) end def self.should_scale? features = { cpu_usage: MonitoringService.get_metric('cpu_usage'), memory_usage: MonitoringService.get_metric('memory_usage'), response_time: MonitoringService.get_metric('avg_response_time'), error_rate: MonitoringService.get_metric('error_rate') } TuskLang.config.ml_adapter.predict('scaling_decision', features) end def self.adaptive_optimization # Optimize cache TTL optimal_ttl = predict_cache_ttl TuskLang.config.cache_adapter.set_ttl(optimal_ttl) # Optimize pool size optimal_pool_size = optimize_pool_size TuskLang.config.database_adapter.set_pool_size(optimal_pool_size) # Check if scaling is needed if should_scale? ScalingService.scale_up end end end

app/services/scaling_service.rb

class ScalingService def self.scale_up # Increase worker count current_workers = TuskLang.config['server']['workers'] new_workers = [current_workers * 2, 16].min TuskLang.config['server']['workers'] = new_workers # Restart application with new configuration Rails.application.config.reload_configuration Rails.logger.info("Scaled up to #{new_workers} workers") end def self.scale_down # Decrease worker count current_workers = TuskLang.config['server']['workers'] new_workers = [current_workers / 2, 1].max TuskLang.config['server']['workers'] = new_workers # Restart application with new configuration Rails.application.config.reload_configuration Rails.logger.info("Scaled down to #{new_workers} workers") end end

🔒 Advanced Security

1. Encryption and Decryption

config/security.tsk

[security] encryption_key: @env("ENCRYPTION_KEY") encryption_algorithm: "AES-256-GCM"

[sensitive_data]

Encrypted database credentials

db_password: @encrypt(@env("DATABASE_PASSWORD"), "AES-256-GCM") api_key: @encrypt(@env("API_KEY"), "AES-256-GCM") jwt_secret: @encrypt(@env("JWT_SECRET"), "AES-256-GCM")

Encrypted configuration values

payment_gateway_key: @encrypt(@env("PAYMENT_GATEWAY_KEY"), "AES-256-GCM") email_password: @encrypt(@env("EMAIL_PASSWORD"), "AES-256-GCM")

2. Input Validation

config/validation.tsk

[validation]

User input validation

email: @validate.email(@request.email) password: @validate.password(@request.password, { min_length: 8, require_uppercase: true, require_lowercase: true, require_numbers: true, require_special: true }) age: @validate.range(@request.age, 13, 120) website: @validate.url(@request.website)

Custom validation rules

strong_password: @validate.custom(@request.password, "strong_password_rule") valid_username: @validate.custom(@request.username, "username_rule")

3. Rate Limiting

config/rate_limiting.tsk

[rate_limiting] enabled: @if($environment == "production", true, false)

[limits]

Global rate limits

global_requests: @if($environment == "production", 1000, 10000) api_requests: @if($environment == "production", 100, 1000) login_attempts: 5 password_reset: 3

User-specific rate limits

user_requests: @if($environment == "production", 100, 1000) user_api_calls: @if($environment == "production", 50, 500)

IP-based rate limits

ip_requests: @if($environment == "production", 500, 5000) ip_login_attempts: 10

Custom rate limiting rules

premium_user_requests: @if(@request.user.subscription_type == "premium", 200, 100) admin_requests: @if(@request.user.role == "admin", 1000, 100)

🎯 Next Steps

Now that you understand advanced features, explore:

1. @ Operators Guide - Master all the powerful built-in functions 2. Security Features - Comprehensive security and validation 3. Deployment Guide - Production deployment and scaling 4. Rails Integration - Deep integration with Rails applications 5. API Documentation - Complete API reference

Ready to build revolutionary applications? Let's Tusk! 🚀