💎 ⚡ TuskLang Ruby Advanced Caching Guide

Ruby Documentation

⚡ TuskLang Ruby Advanced Caching Guide

"We don't bow to any king" - Ruby Edition

Master advanced caching strategies with TuskLang in Ruby. Learn multi-level, distributed, and intelligent caching patterns for high-performance applications.

🏗️ Multi-Level Caching

1. L1 (Memory) + L2 (Redis) + L3 (Database)

config/multi_level_cache.tsk

[cache] l1 { driver: "memory" max_size: 1000 ttl: "1m" } l2 { driver: "redis" host: @env("REDIS_HOST", "localhost") port: @env("REDIS_PORT", 6379) ttl: "5m" } l3 { driver: "database" ttl: "1h" }

[analytics]

Multi-level cached queries

total_users: @cache.l1("30s", @cache.l2("5m", @query("SELECT COUNT(*) FROM users"))) active_users: @cache.l1("1m", @cache.l2("10m", @query("SELECT COUNT(*) FROM users WHERE active = true"))) premium_users: @cache.l2("15m", @cache.l3("1h", @query("SELECT COUNT(*) FROM users WHERE subscription_type = 'premium'")))

2. Ruby Integration

app/services/multi_level_cache.rb

require 'tusklang'

class MultiLevelCache def self.l1_cache @l1_cache ||= TuskLang::Cache::MemoryCache.new(max_size: 1000, ttl: 60) end

def self.l2_cache @l2_cache ||= TuskLang::Cache::RedisCache.new( host: ENV['REDIS_HOST'] || 'localhost', port: ENV['REDIS_PORT'] || 6379 ) end

def self.get(key) # Try L1 first value = l1_cache.get(key) return value if value

# Try L2 value = l2_cache.get(key) if value l1_cache.set(key, value) return value end

# Fallback to database nil end end

🌐 Distributed Caching

1. Redis Cluster Configuration

config/distributed_cache.tsk

[distributed_cache] driver: "redis_cluster" nodes: [ "redis-node-1:6379", "redis-node-2:6379", "redis-node-3:6379" ] ttl: "10m" namespace: "myapp"

[analytics]

Distributed cached queries

user_stats: @cache.distributed("user_stats:#{@date.today()}", "1h", @query(""" SELECT COUNT(*) as total, COUNT(CASE WHEN active = true THEN 1 END) as active, COUNT(CASE WHEN subscription_type = 'premium' THEN 1 END) as premium FROM users """))

2. Memcached Configuration

config/memcached_cache.tsk

[memcached_cache] driver: "memcached" servers: [ "memcached-1:11211", "memcached-2:11211", "memcached-3:11211" ] ttl: "15m" namespace: "myapp"

[analytics]

Memcached cached queries

order_stats: @cache.memcached("order_stats", "30m", @query(""" SELECT COUNT(*) as total_orders, SUM(amount) as total_revenue, AVG(amount) as avg_order_value FROM orders WHERE created_at > ? """, @date.subtract("30d")))

🧠 Intelligent Caching

1. Adaptive TTL

config/intelligent_cache.tsk

[intelligent_cache]

Adaptive TTL based on usage patterns

adaptive_ttl: @optimize("cache_ttl", "5m", { metric: "cache_hit_rate", target: 0.8, min_value: "1m", max_value: "1h" })

[analytics]

Intelligent cached queries

user_engagement: @cache.adaptive("user_engagement", @adaptive_ttl, @query(""" SELECT user_id, COUNT(*) as activity_count, MAX(created_at) as last_activity FROM user_activities WHERE created_at > ? GROUP BY user_id ORDER BY activity_count DESC LIMIT 100 """, @date.subtract("7d")))

2. Predictive Caching

config/predictive_cache.tsk

[predictive_cache]

Predict what data will be needed

predicted_queries: @learn("cache_predictions", [], { features: ["time_of_day", "day_of_week", "user_activity"], algorithm: "random_forest" })

[analytics]

Pre-cache predicted data

predicted_user_data: @cache.predictive("user_data", "30m", @predicted_queries)

🔄 Cache Invalidation Strategies

1. Time-Based Invalidation

config/cache_invalidation.tsk

[cache_invalidation]

Time-based invalidation

time_based { user_data: "5m" order_data: "1m" analytics: "1h" }

[analytics]

Time-based cached queries

recent_users: @cache("5m", @query("SELECT COUNT(*) FROM users WHERE created_at > ?", @date.subtract("1h"))) daily_orders: @cache("1h", @query("SELECT COUNT(*) FROM orders WHERE DATE(created_at) = ?", @date.today()))

2. Event-Based Invalidation

config/event_invalidation.tsk

[cache_invalidation]

Event-based invalidation

event_based { user_created: ["user_count", "user_stats"] order_created: ["order_count", "revenue_stats"] user_updated: ["user_profile", "user_preferences"] }

[analytics]

Event-based cached queries

user_count: @cache("5m", @query("SELECT COUNT(*) FROM users"), { invalidate_on: ["users.created", "users.deleted"], tags: ["users", "analytics"] }) order_stats: @cache("1m", @query("SELECT COUNT(*) FROM orders"), { invalidate_on: ["orders.created", "orders.updated"], tags: ["orders", "analytics"] })

🛠️ Ruby Integration Example

app/services/advanced_cache_service.rb

require 'tusklang'

class AdvancedCacheService def self.load_config parser = TuskLang.new parser.parse_file('config/advanced_cache.tsk') end

def self.get_cached_data(key, fallback_proc) config = load_config # Try multi-level cache value = MultiLevelCache.get(key) return value if value

# Execute fallback and cache result value = fallback_proc.call MultiLevelCache.l1_cache.set(key, value) MultiLevelCache.l2_cache.set(key, value) value end

def self.invalidate_by_tags(tags) config = load_config tags.each do |tag| MultiLevelCache.l1_cache.invalidate_tag(tag) MultiLevelCache.l2_cache.invalidate_tag(tag) end end end

Usage

config = AdvancedCacheService.load_config user_count = AdvancedCacheService.get_cached_data('user_count') do User.count end

🛡️ Best Practices

- Use multi-level caching for optimal performance. - Implement intelligent cache invalidation strategies. - Monitor cache hit rates and adjust TTL accordingly. - Use distributed caching for high availability.

Ready to cache like a pro? Let's Tusk! 🚀