💎 ⚡ TuskLang Ruby Advanced Caching Guide
⚡ TuskLang Ruby Advanced Caching Guide
"We don't bow to any king" - Ruby Edition
Master advanced caching strategies with TuskLang in Ruby. Learn multi-level, distributed, and intelligent caching patterns for high-performance applications.
🏗️ Multi-Level Caching
1. L1 (Memory) + L2 (Redis) + L3 (Database)
config/multi_level_cache.tsk
[cache]
l1 {
driver: "memory"
max_size: 1000
ttl: "1m"
}
l2 {
driver: "redis"
host: @env("REDIS_HOST", "localhost")
port: @env("REDIS_PORT", 6379)
ttl: "5m"
}
l3 {
driver: "database"
ttl: "1h"
}[analytics]
Multi-level cached queries
total_users: @cache.l1("30s", @cache.l2("5m", @query("SELECT COUNT(*) FROM users")))
active_users: @cache.l1("1m", @cache.l2("10m", @query("SELECT COUNT(*) FROM users WHERE active = true")))
premium_users: @cache.l2("15m", @cache.l3("1h", @query("SELECT COUNT(*) FROM users WHERE subscription_type = 'premium'")))
2. Ruby Integration
app/services/multi_level_cache.rb
require 'tusklang'class MultiLevelCache
def self.l1_cache
@l1_cache ||= TuskLang::Cache::MemoryCache.new(max_size: 1000, ttl: 60)
end
def self.l2_cache
@l2_cache ||= TuskLang::Cache::RedisCache.new(
host: ENV['REDIS_HOST'] || 'localhost',
port: ENV['REDIS_PORT'] || 6379
)
end
def self.get(key)
# Try L1 first
value = l1_cache.get(key)
return value if value
# Try L2
value = l2_cache.get(key)
if value
l1_cache.set(key, value)
return value
end
# Fallback to database
nil
end
end
🌐 Distributed Caching
1. Redis Cluster Configuration
config/distributed_cache.tsk
[distributed_cache]
driver: "redis_cluster"
nodes: [
"redis-node-1:6379",
"redis-node-2:6379",
"redis-node-3:6379"
]
ttl: "10m"
namespace: "myapp"[analytics]
Distributed cached queries
user_stats: @cache.distributed("user_stats:#{@date.today()}", "1h", @query("""
SELECT
COUNT(*) as total,
COUNT(CASE WHEN active = true THEN 1 END) as active,
COUNT(CASE WHEN subscription_type = 'premium' THEN 1 END) as premium
FROM users
"""))
2. Memcached Configuration
config/memcached_cache.tsk
[memcached_cache]
driver: "memcached"
servers: [
"memcached-1:11211",
"memcached-2:11211",
"memcached-3:11211"
]
ttl: "15m"
namespace: "myapp"[analytics]
Memcached cached queries
order_stats: @cache.memcached("order_stats", "30m", @query("""
SELECT
COUNT(*) as total_orders,
SUM(amount) as total_revenue,
AVG(amount) as avg_order_value
FROM orders
WHERE created_at > ?
""", @date.subtract("30d")))
🧠 Intelligent Caching
1. Adaptive TTL
config/intelligent_cache.tsk
[intelligent_cache]
Adaptive TTL based on usage patterns
adaptive_ttl: @optimize("cache_ttl", "5m", {
metric: "cache_hit_rate",
target: 0.8,
min_value: "1m",
max_value: "1h"
})[analytics]
Intelligent cached queries
user_engagement: @cache.adaptive("user_engagement", @adaptive_ttl, @query("""
SELECT
user_id,
COUNT(*) as activity_count,
MAX(created_at) as last_activity
FROM user_activities
WHERE created_at > ?
GROUP BY user_id
ORDER BY activity_count DESC
LIMIT 100
""", @date.subtract("7d")))
2. Predictive Caching
config/predictive_cache.tsk
[predictive_cache]
Predict what data will be needed
predicted_queries: @learn("cache_predictions", [], {
features: ["time_of_day", "day_of_week", "user_activity"],
algorithm: "random_forest"
})[analytics]
Pre-cache predicted data
predicted_user_data: @cache.predictive("user_data", "30m", @predicted_queries)
🔄 Cache Invalidation Strategies
1. Time-Based Invalidation
config/cache_invalidation.tsk
[cache_invalidation]
Time-based invalidation
time_based {
user_data: "5m"
order_data: "1m"
analytics: "1h"
}[analytics]
Time-based cached queries
recent_users: @cache("5m", @query("SELECT COUNT(*) FROM users WHERE created_at > ?", @date.subtract("1h")))
daily_orders: @cache("1h", @query("SELECT COUNT(*) FROM orders WHERE DATE(created_at) = ?", @date.today()))
2. Event-Based Invalidation
config/event_invalidation.tsk
[cache_invalidation]
Event-based invalidation
event_based {
user_created: ["user_count", "user_stats"]
order_created: ["order_count", "revenue_stats"]
user_updated: ["user_profile", "user_preferences"]
}[analytics]
Event-based cached queries
user_count: @cache("5m", @query("SELECT COUNT(*) FROM users"), {
invalidate_on: ["users.created", "users.deleted"],
tags: ["users", "analytics"]
})
order_stats: @cache("1m", @query("SELECT COUNT(*) FROM orders"), {
invalidate_on: ["orders.created", "orders.updated"],
tags: ["orders", "analytics"]
})
🛠️ Ruby Integration Example
app/services/advanced_cache_service.rb
require 'tusklang'class AdvancedCacheService
def self.load_config
parser = TuskLang.new
parser.parse_file('config/advanced_cache.tsk')
end
def self.get_cached_data(key, fallback_proc)
config = load_config
# Try multi-level cache
value = MultiLevelCache.get(key)
return value if value
# Execute fallback and cache result
value = fallback_proc.call
MultiLevelCache.l1_cache.set(key, value)
MultiLevelCache.l2_cache.set(key, value)
value
end
def self.invalidate_by_tags(tags)
config = load_config
tags.each do |tag|
MultiLevelCache.l1_cache.invalidate_tag(tag)
MultiLevelCache.l2_cache.invalidate_tag(tag)
end
end
end
Usage
config = AdvancedCacheService.load_config
user_count = AdvancedCacheService.get_cached_data('user_count') do
User.count
end
🛡️ Best Practices
- Use multi-level caching for optimal performance. - Implement intelligent cache invalidation strategies. - Monitor cache hit rates and adjust TTL accordingly. - Use distributed caching for high availability.Ready to cache like a pro? Let's Tusk! 🚀