💎 📈 TuskLang Ruby Advanced Scaling Guide
📈 TuskLang Ruby Advanced Scaling Guide
"We don't bow to any king" - Ruby Edition
Scale TuskLang-powered Ruby applications to handle millions of requests. Master horizontal scaling, auto-scaling, and load balancing strategies.
🔄 Horizontal Scaling
1. Multi-Instance Configuration
config/horizontal_scaling.tsk
[horizontal_scaling]
enabled: true
instance_count: @env("INSTANCE_COUNT", 3)
instance_type: @env("INSTANCE_TYPE", "t3.medium")[instances]
instance_1: {
host: "app-1.myapp.com"
port: 3000
region: "us-east-1"
zone: "us-east-1a"
}
instance_2: {
host: "app-2.myapp.com"
port: 3000
region: "us-east-1"
zone: "us-east-1b"
}
instance_3: {
host: "app-3.myapp.com"
port: 3000
region: "us-east-1"
zone: "us-east-1c"
}
[load_balancer]
type: "application"
algorithm: "round_robin"
health_check_path: "/health"
health_check_interval: "30s"
unhealthy_threshold: 2
healthy_threshold: 2
2. Database Scaling
config/database_scaling.tsk
[database_scaling]
enabled: true
read_replicas: @env("DB_READ_REPLICAS", 2)[primary_db]
host: "db-primary.myapp.com"
port: 5432
name: "myapp"
role: "master"
[read_replicas]
replica_1: {
host: "db-replica-1.myapp.com"
port: 5432
name: "myapp"
role: "slave"
lag_threshold: "5s"
}
replica_2: {
host: "db-replica-2.myapp.com"
port: 5432
name: "myapp"
role: "slave"
lag_threshold: "5s"
}
[connection_pool]
primary_pool: {
min_size: 5
max_size: 20
idle_timeout: "300s"
}
replica_pool: {
min_size: 3
max_size: 10
idle_timeout: "300s"
}
🤖 Auto-Scaling
1. Auto-Scaling Configuration
config/auto_scaling.tsk
[auto_scaling]
enabled: true
min_instances: @env("MIN_INSTANCES", 2)
max_instances: @env("MAX_INSTANCES", 10)
target_cpu_utilization: 70
target_memory_utilization: 80
scale_up_cooldown: "300s"
scale_down_cooldown: "600s"[scaling_metrics]
cpu_utilization: @metrics("cpu_utilization_percent", @system.cpu_usage)
memory_utilization: @metrics("memory_utilization_percent", @system.memory_usage)
request_count: @metrics("request_count_per_second", @request.count_per_second)
response_time: @metrics("response_time_ms", @request.response_time)
queue_length: @metrics("queue_length", @queue.length)
[scaling_policies]
scale_up: @alert("cpu_utilization_percent > 70 OR memory_utilization_percent > 80", {
action: "scale_up",
instances: 1
})
scale_down: @alert("cpu_utilization_percent < 30 AND memory_utilization_percent < 50", {
action: "scale_down",
instances: 1
})
2. Kubernetes HPA
k8s/horizontal-pod-autoscaler.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: myapp-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: myapp
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
behavior:
scaleUp:
stabilizationWindowSeconds: 300
scaleDown:
stabilizationWindowSeconds: 600
⚖️ Load Balancing
1. Load Balancer Configuration
config/load_balancer.tsk
[load_balancer]
type: "application"
algorithm: "least_connections"
health_check {
path: "/health"
interval: "30s"
timeout: "5s"
healthy_threshold: 2
unhealthy_threshold: 3
}[backend_servers]
server_1: {
host: "app-1.myapp.com"
port: 3000
weight: 1
max_connections: 1000
}
server_2: {
host: "app-2.myapp.com"
port: 3000
weight: 1
max_connections: 1000
}
server_3: {
host: "app-3.myapp.com"
port: 3000
weight: 1
max_connections: 1000
}
[ssl]
enabled: true
certificate: "/etc/ssl/certs/myapp.crt"
private_key: "/etc/ssl/private/myapp.key"
protocols: ["TLSv1.2", "TLSv1.3"]
2. Nginx Load Balancer
nginx.conf
upstream backend {
least_conn;
server app-1.myapp.com:3000 max_conns=1000;
server app-2.myapp.com:3000 max_conns=1000;
server app-3.myapp.com:3000 max_conns=1000;
keepalive 32;
}server {
listen 80;
server_name myapp.com;
location / {
proxy_pass http://backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_connect_timeout 30s;
proxy_send_timeout 30s;
proxy_read_timeout 30s;
}
location /health {
access_log off;
return 200 "healthy\n";
add_header Content-Type text/plain;
}
}
🗄️ Database Scaling
1. Read Replica Configuration
config/database_scaling.tsk
[database_scaling]
enabled: true
read_replicas: @env("DB_READ_REPLICAS", 2)[primary_db]
host: "db-primary.myapp.com"
port: 5432
name: "myapp"
user: "postgres"
password: @env.secure("DB_PASSWORD")
[read_replicas]
replica_1: {
host: "db-replica-1.myapp.com"
port: 5432
name: "myapp"
user: "postgres"
password: @env.secure("DB_PASSWORD")
lag_threshold: "5s"
}
replica_2: {
host: "db-replica-2.myapp.com"
port: 5432
name: "myapp"
user: "postgres"
password: @env.secure("DB_PASSWORD")
lag_threshold: "5s"
}
[query_routing]
Route read queries to replicas
read_queries: [
"SELECT",
"SHOW",
"DESCRIBE",
"EXPLAIN"
]
Route write queries to primary
write_queries: [
"INSERT",
"UPDATE",
"DELETE",
"CREATE",
"ALTER",
"DROP"
]
2. Database Connection Pooling
config/connection_pool.tsk
[connection_pool]
enabled: true[primary_pool]
min_size: 5
max_size: 20
idle_timeout: "300s"
max_lifetime: "3600s"
check_interval: "60s"
[replica_pool]
min_size: 3
max_size: 10
idle_timeout: "300s"
max_lifetime: "3600s"
check_interval: "60s"
[pool_monitoring]
active_connections: @metrics("db_active_connections", @db.active_connections)
idle_connections: @metrics("db_idle_connections", @db.idle_connections)
waiting_connections: @metrics("db_waiting_connections", @db.waiting_connections)
🛠️ Ruby Integration Example
app/services/scaling_service.rb
require 'tusklang'class ScalingService
def self.load_scaling_config
parser = TuskLang.new
parser.parse_file('config/scaling.tsk')
end
def self.get_available_instances
config = load_scaling_config
config['instances'].keys
end
def self.get_load_balanced_instance
config = load_scaling_config
instances = config['instances']
# Simple round-robin load balancing
current_instance = Rails.cache.read('current_instance') || 0
instance_keys = instances.keys
next_instance = instance_keys[current_instance % instance_keys.length]
Rails.cache.write('current_instance', current_instance + 1)
instances[next_instance]
end
def self.check_auto_scaling_metrics
config = load_scaling_config
if config['auto_scaling']['enabled']
cpu_utilization = config['scaling_metrics']['cpu_utilization']
memory_utilization = config['scaling_metrics']['memory_utilization']
# Check scale up conditions
if cpu_utilization > config['auto_scaling']['target_cpu_utilization'] ||
memory_utilization > config['auto_scaling']['target_memory_utilization']
scale_up_instances(1)
end
# Check scale down conditions
if cpu_utilization < 30 && memory_utilization < 50
scale_down_instances(1)
end
end
end
def self.get_database_connection(type = :primary)
config = load_scaling_config
case type
when :primary
db_config = config['primary_db']
when :replica
# Select least loaded replica
replicas = config['read_replicas']
db_config = select_least_loaded_replica(replicas)
end
establish_database_connection(db_config)
end
private
def self.scale_up_instances(count)
# Implementation for scaling up instances
Rails.logger.info("Scaling up #{count} instances")
end
def self.scale_down_instances(count)
# Implementation for scaling down instances
Rails.logger.info("Scaling down #{count} instances")
end
def self.select_least_loaded_replica(replicas)
# Implementation for selecting least loaded replica
replicas.values.min_by { |replica| replica['active_connections'] || 0 }
end
def self.establish_database_connection(db_config)
# Implementation for establishing database connection
ActiveRecord::Base.establish_connection(
adapter: 'postgresql',
host: db_config['host'],
port: db_config['port'],
database: db_config['name'],
username: db_config['user'],
password: db_config['password']
)
end
end
Usage
instances = ScalingService.get_available_instances
instance = ScalingService.get_load_balanced_instance
ScalingService.check_auto_scaling_metrics
db_connection = ScalingService.get_database_connection(:replica)
🛡️ Best Practices
- Use horizontal scaling for stateless applications. - Implement auto-scaling based on metrics and demand. - Use load balancing for high availability. - Scale databases with read replicas and connection pooling. - Monitor scaling metrics and performance.Ready to scale to infinity? Let's Tusk! 🚀