💎 📈 TuskLang Ruby Advanced Scaling Guide

Ruby Documentation

📈 TuskLang Ruby Advanced Scaling Guide

"We don't bow to any king" - Ruby Edition

Scale TuskLang-powered Ruby applications to handle millions of requests. Master horizontal scaling, auto-scaling, and load balancing strategies.

🔄 Horizontal Scaling

1. Multi-Instance Configuration

config/horizontal_scaling.tsk

[horizontal_scaling] enabled: true instance_count: @env("INSTANCE_COUNT", 3) instance_type: @env("INSTANCE_TYPE", "t3.medium")

[instances] instance_1: { host: "app-1.myapp.com" port: 3000 region: "us-east-1" zone: "us-east-1a" } instance_2: { host: "app-2.myapp.com" port: 3000 region: "us-east-1" zone: "us-east-1b" } instance_3: { host: "app-3.myapp.com" port: 3000 region: "us-east-1" zone: "us-east-1c" }

[load_balancer] type: "application" algorithm: "round_robin" health_check_path: "/health" health_check_interval: "30s" unhealthy_threshold: 2 healthy_threshold: 2

2. Database Scaling

config/database_scaling.tsk

[database_scaling] enabled: true read_replicas: @env("DB_READ_REPLICAS", 2)

[primary_db] host: "db-primary.myapp.com" port: 5432 name: "myapp" role: "master"

[read_replicas] replica_1: { host: "db-replica-1.myapp.com" port: 5432 name: "myapp" role: "slave" lag_threshold: "5s" } replica_2: { host: "db-replica-2.myapp.com" port: 5432 name: "myapp" role: "slave" lag_threshold: "5s" }

[connection_pool] primary_pool: { min_size: 5 max_size: 20 idle_timeout: "300s" } replica_pool: { min_size: 3 max_size: 10 idle_timeout: "300s" }

🤖 Auto-Scaling

1. Auto-Scaling Configuration

config/auto_scaling.tsk

[auto_scaling] enabled: true min_instances: @env("MIN_INSTANCES", 2) max_instances: @env("MAX_INSTANCES", 10) target_cpu_utilization: 70 target_memory_utilization: 80 scale_up_cooldown: "300s" scale_down_cooldown: "600s"

[scaling_metrics] cpu_utilization: @metrics("cpu_utilization_percent", @system.cpu_usage) memory_utilization: @metrics("memory_utilization_percent", @system.memory_usage) request_count: @metrics("request_count_per_second", @request.count_per_second) response_time: @metrics("response_time_ms", @request.response_time) queue_length: @metrics("queue_length", @queue.length)

[scaling_policies] scale_up: @alert("cpu_utilization_percent > 70 OR memory_utilization_percent > 80", { action: "scale_up", instances: 1 }) scale_down: @alert("cpu_utilization_percent < 30 AND memory_utilization_percent < 50", { action: "scale_down", instances: 1 })

2. Kubernetes HPA

k8s/horizontal-pod-autoscaler.yaml

apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: myapp minReplicas: 2 maxReplicas: 10 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 70 - type: Resource resource: name: memory target: type: Utilization averageUtilization: 80 behavior: scaleUp: stabilizationWindowSeconds: 300 scaleDown: stabilizationWindowSeconds: 600

⚖️ Load Balancing

1. Load Balancer Configuration

config/load_balancer.tsk

[load_balancer] type: "application" algorithm: "least_connections" health_check { path: "/health" interval: "30s" timeout: "5s" healthy_threshold: 2 unhealthy_threshold: 3 }

[backend_servers] server_1: { host: "app-1.myapp.com" port: 3000 weight: 1 max_connections: 1000 } server_2: { host: "app-2.myapp.com" port: 3000 weight: 1 max_connections: 1000 } server_3: { host: "app-3.myapp.com" port: 3000 weight: 1 max_connections: 1000 }

[ssl] enabled: true certificate: "/etc/ssl/certs/myapp.crt" private_key: "/etc/ssl/private/myapp.key" protocols: ["TLSv1.2", "TLSv1.3"]

2. Nginx Load Balancer

nginx.conf

upstream backend { least_conn; server app-1.myapp.com:3000 max_conns=1000; server app-2.myapp.com:3000 max_conns=1000; server app-3.myapp.com:3000 max_conns=1000; keepalive 32; }

server { listen 80; server_name myapp.com; location / { proxy_pass http://backend; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Forwarded-Proto $scheme; proxy_connect_timeout 30s; proxy_send_timeout 30s; proxy_read_timeout 30s; } location /health { access_log off; return 200 "healthy\n"; add_header Content-Type text/plain; } }

🗄️ Database Scaling

1. Read Replica Configuration

config/database_scaling.tsk

[database_scaling] enabled: true read_replicas: @env("DB_READ_REPLICAS", 2)

[primary_db] host: "db-primary.myapp.com" port: 5432 name: "myapp" user: "postgres" password: @env.secure("DB_PASSWORD")

[read_replicas] replica_1: { host: "db-replica-1.myapp.com" port: 5432 name: "myapp" user: "postgres" password: @env.secure("DB_PASSWORD") lag_threshold: "5s" } replica_2: { host: "db-replica-2.myapp.com" port: 5432 name: "myapp" user: "postgres" password: @env.secure("DB_PASSWORD") lag_threshold: "5s" }

[query_routing]

Route read queries to replicas

read_queries: [ "SELECT", "SHOW", "DESCRIBE", "EXPLAIN" ]

Route write queries to primary

write_queries: [ "INSERT", "UPDATE", "DELETE", "CREATE", "ALTER", "DROP" ]

2. Database Connection Pooling

config/connection_pool.tsk

[connection_pool] enabled: true

[primary_pool] min_size: 5 max_size: 20 idle_timeout: "300s" max_lifetime: "3600s" check_interval: "60s"

[replica_pool] min_size: 3 max_size: 10 idle_timeout: "300s" max_lifetime: "3600s" check_interval: "60s"

[pool_monitoring] active_connections: @metrics("db_active_connections", @db.active_connections) idle_connections: @metrics("db_idle_connections", @db.idle_connections) waiting_connections: @metrics("db_waiting_connections", @db.waiting_connections)

🛠️ Ruby Integration Example

app/services/scaling_service.rb

require 'tusklang'

class ScalingService def self.load_scaling_config parser = TuskLang.new parser.parse_file('config/scaling.tsk') end

def self.get_available_instances config = load_scaling_config config['instances'].keys end

def self.get_load_balanced_instance config = load_scaling_config instances = config['instances'] # Simple round-robin load balancing current_instance = Rails.cache.read('current_instance') || 0 instance_keys = instances.keys next_instance = instance_keys[current_instance % instance_keys.length] Rails.cache.write('current_instance', current_instance + 1) instances[next_instance] end

def self.check_auto_scaling_metrics config = load_scaling_config if config['auto_scaling']['enabled'] cpu_utilization = config['scaling_metrics']['cpu_utilization'] memory_utilization = config['scaling_metrics']['memory_utilization'] # Check scale up conditions if cpu_utilization > config['auto_scaling']['target_cpu_utilization'] || memory_utilization > config['auto_scaling']['target_memory_utilization'] scale_up_instances(1) end # Check scale down conditions if cpu_utilization < 30 && memory_utilization < 50 scale_down_instances(1) end end end

def self.get_database_connection(type = :primary) config = load_scaling_config case type when :primary db_config = config['primary_db'] when :replica # Select least loaded replica replicas = config['read_replicas'] db_config = select_least_loaded_replica(replicas) end establish_database_connection(db_config) end

private

def self.scale_up_instances(count) # Implementation for scaling up instances Rails.logger.info("Scaling up #{count} instances") end

def self.scale_down_instances(count) # Implementation for scaling down instances Rails.logger.info("Scaling down #{count} instances") end

def self.select_least_loaded_replica(replicas) # Implementation for selecting least loaded replica replicas.values.min_by { |replica| replica['active_connections'] || 0 } end

def self.establish_database_connection(db_config) # Implementation for establishing database connection ActiveRecord::Base.establish_connection( adapter: 'postgresql', host: db_config['host'], port: db_config['port'], database: db_config['name'], username: db_config['user'], password: db_config['password'] ) end end

Usage

instances = ScalingService.get_available_instances instance = ScalingService.get_load_balanced_instance ScalingService.check_auto_scaling_metrics db_connection = ScalingService.get_database_connection(:replica)

🛡️ Best Practices

- Use horizontal scaling for stateless applications. - Implement auto-scaling based on metrics and demand. - Use load balancing for high availability. - Scale databases with read replicas and connection pooling. - Monitor scaling metrics and performance.

Ready to scale to infinity? Let's Tusk! 🚀