💎 Scaling Strategies with TuskLang and Ruby

Ruby Documentation

Scaling Strategies with TuskLang and Ruby

📈 Scale Your Applications to Infinity and Beyond

TuskLang enables sophisticated scaling strategies for Ruby applications, providing horizontal scaling, auto-scaling, load balancing, and performance optimization. Build applications that can handle millions of requests while maintaining performance and reliability.

🚀 Quick Start: Horizontal Scaling

Basic Scaling Configuration

config/scaling.tsk

[scaling] strategy: @env("SCALING_STRATEGY", "horizontal") # horizontal, vertical, auto min_instances: @env("MIN_INSTANCES", "3") max_instances: @env("MAX_INSTANCES", "10") target_cpu_utilization: @env("TARGET_CPU_UTILIZATION", "70") target_memory_utilization: @env("TARGET_MEMORY_UTILIZATION", "80")

[load_balancing] algorithm: @env("LB_ALGORITHM", "round_robin") # round_robin, least_connections, ip_hash health_check_interval: @env("LB_HEALTH_CHECK_INTERVAL", "30") health_check_timeout: @env("LB_HEALTH_CHECK_TIMEOUT", "5") health_check_path: @env("LB_HEALTH_CHECK_PATH", "/health")

[performance] connection_pool_size: @env("CONNECTION_POOL_SIZE", "20") cache_ttl: @env("CACHE_TTL", "300") background_job_workers: @env("BACKGROUND_JOB_WORKERS", "5")

Application Load Balancer

lib/load_balancer.rb

require 'tusk' require 'redis' require 'json'

class LoadBalancer def initialize(config_path = 'config/scaling.tsk') @config = Tusk.load(config_path) @redis = Redis.new(url: @config['redis']['url']) @algorithm = @config['load_balancing']['algorithm'] @instances = [] @health_checks = {} end

def add_instance(instance) @instances << { id: instance[:id], host: instance[:host], port: instance[:port], weight: instance[:weight] || 1, health_status: 'healthy', last_check: Time.now, connection_count: 0 } end

def get_next_instance healthy_instances = @instances.select { |instance| instance[:health_status] == 'healthy' } return nil if healthy_instances.empty?

case @algorithm when 'round_robin' next_round_robin(healthy_instances) when 'least_connections' next_least_connections(healthy_instances) when 'ip_hash' next_ip_hash(healthy_instances) when 'weighted_round_robin' next_weighted_round_robin(healthy_instances) else healthy_instances.first end end

def record_connection(instance_id) instance = @instances.find { |i| i[:id] == instance_id } return unless instance

instance[:connection_count] += 1 @redis.hincrby("lb:connections", instance_id, 1) end

def record_disconnection(instance_id) instance = @instances.find { |i| i[:id] == instance_id } return unless instance

instance[:connection_count] = [instance[:connection_count] - 1, 0].max @redis.hincrby("lb:connections", instance_id, -1) end

def start_health_checks Thread.new do loop do check_all_instances sleep @config['load_balancing']['health_check_interval'].to_i end end end

private

def next_round_robin(instances) @current_index ||= 0 instance = instances[@current_index % instances.length] @current_index += 1 instance end

def next_least_connections(instances) instances.min_by { |instance| instance[:connection_count] } end

def next_ip_hash(instances) # This would be implemented with actual client IP instances.first end

def next_weighted_round_robin(instances) total_weight = instances.sum { |instance| instance[:weight] } random = rand(total_weight) current_weight = 0 instances.each do |instance| current_weight += instance[:weight] return instance if random < current_weight end instances.first end

def check_all_instances @instances.each do |instance| health_status = check_instance_health(instance) instance[:health_status] = health_status instance[:last_check] = Time.now end end

def check_instance_health(instance) begin uri = URI("http://#{instance[:host]}:#{instance[:port]}#{@config['load_balancing']['health_check_path']}") response = Net::HTTP.get_response(uri) response.code == '200' ? 'healthy' : 'unhealthy' rescue => e Rails.logger.error "Health check failed for #{instance[:id]}: #{e.message}" 'unhealthy' end end end

🔄 Auto-Scaling Implementation

Auto-Scaling Manager

lib/auto_scaling_manager.rb

require 'tusk' require 'redis' require 'json'

class AutoScalingManager def initialize(config_path = 'config/scaling.tsk') @config = Tusk.load(config_path) @redis = Redis.new(url: @config['redis']['url']) @min_instances = @config['scaling']['min_instances'].to_i @max_instances = @config['scaling']['max_instances'].to_i @target_cpu = @config['scaling']['target_cpu_utilization'].to_i @target_memory = @config['scaling']['target_memory_utilization'].to_i @scaling_cooldown = @config['scaling']['cooldown_period'].to_i || 300 @last_scale_time = Time.now end

def start_monitoring Thread.new do loop do evaluate_scaling sleep @config['scaling']['evaluation_interval'].to_i || 60 end end end

def evaluate_scaling return if Time.now - @last_scale_time < @scaling_cooldown

current_metrics = get_current_metrics scaling_decision = determine_scaling_decision(current_metrics)

case scaling_decision when :scale_up scale_up when :scale_down scale_down end end

def get_current_metrics { cpu_utilization: get_cpu_utilization, memory_utilization: get_memory_utilization, request_rate: get_request_rate, response_time: get_average_response_time, error_rate: get_error_rate } end

def determine_scaling_decision(metrics) # Scale up conditions if should_scale_up?(metrics) return :scale_up end

# Scale down conditions if should_scale_down?(metrics) return :scale_down end

:no_action end

def should_scale_up?(metrics) metrics[:cpu_utilization] > @target_cpu || metrics[:memory_utilization] > @target_memory || metrics[:response_time] > @config['scaling']['max_response_time'].to_i || metrics[:error_rate] > @config['scaling']['max_error_rate'].to_f end

def should_scale_down?(metrics) current_instances = get_current_instance_count return false if current_instances <= @min_instances

metrics[:cpu_utilization] < (@target_cpu * 0.5) && metrics[:memory_utilization] < (@target_memory * 0.5) && metrics[:request_rate] < @config['scaling']['min_request_rate'].to_i end

def scale_up current_count = get_current_instance_count return if current_count >= @max_instances

new_count = [current_count + 1, @max_instances].min create_new_instances(new_count - current_count) @last_scale_time = Time.now Rails.logger.info "Scaling up from #{current_count} to #{new_count} instances" end

def scale_down current_count = get_current_instance_count return if current_count <= @min_instances

new_count = [current_count - 1, @min_instances].max remove_instances(current_count - new_count) @last_scale_time = Time.now Rails.logger.info "Scaling down from #{current_count} to #{new_count} instances" end

private

def get_cpu_utilization # Implement CPU utilization monitoring # This could use system metrics, Kubernetes API, or cloud provider APIs @redis.get('metrics:cpu_utilization').to_f || 0.0 end

def get_memory_utilization # Implement memory utilization monitoring @redis.get('metrics:memory_utilization').to_f || 0.0 end

def get_request_rate # Get requests per second @redis.get('metrics:request_rate').to_i || 0 end

def get_average_response_time # Get average response time in milliseconds @redis.get('metrics:response_time').to_i || 0 end

def get_error_rate # Get error rate percentage @redis.get('metrics:error_rate').to_f || 0.0 end

def get_current_instance_count # Get current number of running instances @redis.get('scaling:instance_count').to_i || @min_instances end

def create_new_instances(count) # Implement instance creation logic # This could use Kubernetes API, Docker API, or cloud provider APIs count.times do instance_id = SecureRandom.uuid # Create new instance @redis.hset("instances", instance_id, { id: instance_id, status: 'starting', created_at: Time.now.iso8601 }.to_json) end @redis.incrby('scaling:instance_count', count) end

def remove_instances(count) # Implement instance removal logic instances = @redis.hgetall("instances") instances_to_remove = instances.select { |_, data| JSON.parse(data)['status'] == 'idle' }.first(count) instances_to_remove.each do |instance_id, _| @redis.hdel("instances", instance_id) end @redis.decrby('scaling:instance_count', instances_to_remove.length) end end

📊 Performance Monitoring

Metrics Collector

lib/metrics_collector.rb

require 'tusk' require 'redis' require 'json' require 'prometheus/client'

class MetricsCollector def initialize(config_path = 'config/scaling.tsk') @config = Tusk.load(config_path) @redis = Redis.new(url: @config['redis']['url']) setup_prometheus_metrics end

def record_request(method, path, status, duration, instance_id = nil) # Record request metrics @request_counter.increment( method: method, path: path, status: status.to_s, instance: instance_id )

@request_duration.observe( duration, method: method, path: path, instance: instance_id )

# Store in Redis for auto-scaling store_request_metrics(method, path, status, duration) end

def record_error(error_type, error_message, instance_id = nil) @error_counter.increment( error_type: error_type, instance: instance_id )

store_error_metrics(error_type, error_message) end

def record_system_metrics(cpu_utilization, memory_utilization, instance_id = nil) @cpu_gauge.set(cpu_utilization, instance: instance_id) @memory_gauge.set(memory_utilization, instance: instance_id)

store_system_metrics(cpu_utilization, memory_utilization) end

def get_metrics_summary { request_rate: calculate_request_rate, average_response_time: calculate_average_response_time, error_rate: calculate_error_rate, cpu_utilization: get_current_cpu_utilization, memory_utilization: get_current_memory_utilization } end

private

def setup_prometheus_metrics @request_counter = Prometheus::Client::Counter.new( :http_requests_total, docstring: 'Total number of HTTP requests', labels: [:method, :path, :status, :instance] )

@request_duration = Prometheus::Client::Histogram.new( :http_request_duration_seconds, docstring: 'HTTP request duration in seconds', labels: [:method, :path, :instance] )

@error_counter = Prometheus::Client::Counter.new( :http_errors_total, docstring: 'Total number of HTTP errors', labels: [:error_type, :instance] )

@cpu_gauge = Prometheus::Client::Gauge.new( :cpu_utilization_percent, docstring: 'CPU utilization percentage', labels: [:instance] )

@memory_gauge = Prometheus::Client::Gauge.new( :memory_utilization_percent, docstring: 'Memory utilization percentage', labels: [:instance] ) end

def store_request_metrics(method, path, status, duration) now = Time.now.to_i pipeline = @redis.pipeline

# Store request count pipeline.incr("metrics:requests:#{now}") # Store response time pipeline.lpush("metrics:response_times:#{now}", duration) pipeline.expire("metrics:response_times:#{now}", 3600) # Store status codes pipeline.hincrby("metrics:status_codes:#{now}", status.to_s, 1) pipeline.expire("metrics:status_codes:#{now}", 3600)

pipeline.exec end

def store_error_metrics(error_type, error_message) now = Time.now.to_i @redis.hincrby("metrics:errors:#{now}", error_type, 1) @redis.expire("metrics:errors:#{now}", 3600) end

def store_system_metrics(cpu_utilization, memory_utilization) now = Time.now.to_i @redis.set("metrics:cpu_utilization", cpu_utilization) @redis.set("metrics:memory_utilization", memory_utilization) @redis.set("metrics:last_update", now) end

def calculate_request_rate now = Time.now.to_i requests_last_minute = 0 60.times do |i| requests_last_minute += @redis.get("metrics:requests:#{now - i}").to_i end requests_last_minute / 60.0 end

def calculate_average_response_time now = Time.now.to_i response_times = [] 60.times do |i| times = @redis.lrange("metrics:response_times:#{now - i}", 0, -1) response_times.concat(times.map(&:to_f)) end return 0 if response_times.empty? response_times.sum / response_times.length end

def calculate_error_rate now = Time.now.to_i total_requests = 0 total_errors = 0 60.times do |i| total_requests += @redis.get("metrics:requests:#{now - i}").to_i error_counts = @redis.hgetall("metrics:errors:#{now - i}") total_errors += error_counts.values.sum(&:to_i) end return 0 if total_requests == 0 (total_errors.to_f / total_requests) * 100 end

def get_current_cpu_utilization @redis.get('metrics:cpu_utilization').to_f || 0.0 end

def get_current_memory_utilization @redis.get('metrics:memory_utilization').to_f || 0.0 end end

🔄 Connection Pooling and Resource Management

Advanced Connection Pool

lib/advanced_connection_pool.rb

require 'connection_pool' require 'tusk' require 'redis'

class AdvancedConnectionPool def initialize(config_path = 'config/scaling.tsk') @config = Tusk.load(config_path) setup_pools end

def with_database(&block) @database_pool.with(&block) end

def with_redis(&block) @redis_pool.with(&block) end

def with_http_client(&block) @http_pool.with(&block) end

def pool_status { database: { size: @database_pool.size, available: @database_pool.available, busy: @database_pool.busy }, redis: { size: @redis_pool.size, available: @redis_pool.available, busy: @redis_pool.busy }, http: { size: @http_pool.size, available: @http_pool.available, busy: @http_pool.busy } } end

private

def setup_pools @database_pool = ConnectionPool.new( size: @config['performance']['connection_pool_size'].to_i, timeout: @config['performance']['connection_timeout'].to_i || 5 ) do ActiveRecord::Base.connection_pool.checkout end

@redis_pool = ConnectionPool.new( size: @config['performance']['redis_pool_size'].to_i || 10, timeout: @config['performance']['connection_timeout'].to_i || 5 ) do Redis.new(url: @config['redis']['url']) end

@http_pool = ConnectionPool.new( size: @config['performance']['http_pool_size'].to_i || 20, timeout: @config['performance']['connection_timeout'].to_i || 5 ) do Net::HTTP.new(@config['http']['host'], @config['http']['port']) end end end

🚀 Caching Strategies

Multi-Level Cache

lib/multi_level_cache.rb

require 'tusk' require 'redis' require 'dalli'

class MultiLevelCache def initialize(config_path = 'config/scaling.tsk') @config = Tusk.load(config_path) setup_cache_layers end

def get(key, options = {}) # Try L1 cache (memory) value = get_from_l1(key) return value if value

# Try L2 cache (Redis) value = get_from_l2(key) if value set_l1(key, value, options[:ttl]) return value end

# Try L3 cache (Memcached) value = get_from_l3(key) if value set_l2(key, value, options[:ttl]) set_l1(key, value, options[:ttl]) return value end

nil end

def set(key, value, options = {}) ttl = options[:ttl] || @config['caching']['default_ttl'].to_i

# Set in all cache layers set_l1(key, value, ttl) set_l2(key, value, ttl) set_l3(key, value, ttl) end

def delete(key) delete_from_l1(key) delete_from_l2(key) delete_from_l3(key) end

def clear_pattern(pattern) clear_l1_pattern(pattern) clear_l2_pattern(pattern) clear_l3_pattern(pattern) end

private

def setup_cache_layers # L1: Memory cache (fastest, smallest) @l1_cache = {} @l1_ttl = {}

# L2: Redis cache (fast, medium size) @l2_cache = Redis.new(url: @config['redis']['url'])

# L3: Memcached cache (slower, largest) @l3_cache = Dalli::Client.new(@config['memcached']['servers']) end

def get_from_l1(key) return nil unless @l1_cache[key] return nil if @l1_ttl[key] && Time.now.to_i > @l1_ttl[key] @l1_cache[key] end

def set_l1(key, value, ttl) @l1_cache[key] = value @l1_ttl[key] = Time.now.to_i + ttl if ttl > 0 end

def delete_from_l1(key) @l1_cache.delete(key) @l1_ttl.delete(key) end

def clear_l1_pattern(pattern) @l1_cache.keys.grep(Regexp.new(pattern)).each do |key| delete_from_l1(key) end end

def get_from_l2(key) @l2_cache.get(key) end

def set_l2(key, value, ttl) if ttl > 0 @l2_cache.setex(key, ttl, value) else @l2_cache.set(key, value) end end

def delete_from_l2(key) @l2_cache.del(key) end

def clear_l2_pattern(pattern) keys = @l2_cache.keys(pattern) @l2_cache.del(*keys) unless keys.empty? end

def get_from_l3(key) @l3_cache.get(key) end

def set_l3(key, value, ttl) @l3_cache.set(key, value, ttl) end

def delete_from_l3(key) @l3_cache.delete(key) end

def clear_l3_pattern(pattern) # Memcached doesn't support pattern deletion # This would need to be implemented differently end end

🔄 Background Job Scaling

Scalable Job Queue

lib/scalable_job_queue.rb

require 'sidekiq' require 'tusk' require 'redis'

class ScalableJobQueue def initialize(config_path = 'config/scaling.tsk') @config = Tusk.load(config_path) setup_sidekiq end

def enqueue_job(job_class, *args, options = {}) priority = options[:priority] || 'default' queue = options[:queue] || 'default' retry_count = options[:retry_count] || 3

job_class.set( queue: queue, priority: priority, retry: retry_count ).perform_async(*args) end

def enqueue_batch_jobs(job_class, batch_data, options = {}) batch = Sidekiq::Batch.new batch.on(:success, BatchCallback, job_class: job_class)

batch.jobs do batch_data.each do |data| enqueue_job(job_class, data, options) end end end

def get_queue_stats stats = {} Sidekiq::Queue.all.each do |queue| stats[queue.name] = { size: queue.size, latency: queue.latency, paused: queue.paused? } end stats end

def scale_workers(target_count) current_workers = get_current_worker_count return if current_workers == target_count

if current_workers < target_count scale_up_workers(target_count - current_workers) else scale_down_workers(current_workers - target_count) end end

private

def setup_sidekiq Sidekiq.configure_server do |config| config.redis = { url: @config['redis']['url'] } config.concurrency = @config['background_jobs']['worker_concurrency'].to_i || 10 config.queues = @config['background_jobs']['queues'] || ['default'] end

Sidekiq.configure_client do |config| config.redis = { url: @config['redis']['url'] } end end

def get_current_worker_count # This would need to be implemented based on your deployment strategy # Could use Kubernetes API, Docker API, or process monitoring @redis.get('workers:count').to_i || 1 end

def scale_up_workers(count) # Implement worker scaling logic count.times do # Start new worker process spawn_worker_process end end

def scale_down_workers(count) # Implement worker scaling down logic count.times do # Gracefully stop worker process stop_worker_process end end

def spawn_worker_process # Implementation depends on deployment strategy # Could use system commands, Kubernetes API, etc. end

def stop_worker_process # Implementation depends on deployment strategy # Could use system signals, Kubernetes API, etc. end end

class BatchCallback def on_success(status, options) job_class = options['job_class'] Rails.logger.info "Batch completed for #{job_class}" end end

🔄 Database Scaling

Read Replica Load Balancer

lib/read_replica_balancer.rb

require 'tusk' require 'active_record'

class ReadReplicaBalancer def initialize(config_path = 'config/scaling.tsk') @config = Tusk.load(config_path) @replicas = [] @current_index = 0 setup_replicas end

def with_read_replica(&block) replica = get_next_replica replica.connection_pool.with_connection do block.call end end

def add_replica(connection_config) @replicas << create_replica_connection(connection_config) end

def remove_replica(replica_id) @replicas.reject! { |replica| replica.id == replica_id } end

def replica_health_check @replicas.each do |replica| begin replica.connection.execute('SELECT 1') replica.healthy = true rescue => e replica.healthy = false Rails.logger.error "Replica health check failed: #{e.message}" end end end

private

def setup_replicas @config['database']['read_replicas'].each do |replica_config| add_replica(replica_config) end end

def create_replica_connection(config) connection = ActiveRecord::Base.establish_connection(config) connection.define_singleton_method(:healthy) { @healthy = true } connection.define_singleton_method(:healthy=) { |value| @healthy = value } connection end

def get_next_replica healthy_replicas = @replicas.select(&:healthy) return @replicas.first if healthy_replicas.empty?

replica = healthy_replicas[@current_index % healthy_replicas.length] @current_index += 1 replica end end

🎯 Configuration Management

Dynamic Configuration

config/dynamic_scaling.tsk

[scaling] enabled: @env("AUTO_SCALING_ENABLED", "true") evaluation_interval: @env("SCALING_EVALUATION_INTERVAL", "60") cooldown_period: @env("SCALING_COOLDOWN_PERIOD", "300")

[thresholds] cpu_high: @env("CPU_HIGH_THRESHOLD", "80") cpu_low: @env("CPU_LOW_THRESHOLD", "30") memory_high: @env("MEMORY_HIGH_THRESHOLD", "85") memory_low: @env("MEMORY_LOW_THRESHOLD", "40") response_time_high: @env("RESPONSE_TIME_HIGH_THRESHOLD", "1000") error_rate_high: @env("ERROR_RATE_HIGH_THRESHOLD", "5")

[scaling_rules] scale_up_factor: @env("SCALE_UP_FACTOR", "1.5") scale_down_factor: @env("SCALE_DOWN_FACTOR", "0.8") min_scale_up_interval: @env("MIN_SCALE_UP_INTERVAL", "60") min_scale_down_interval: @env("MIN_SCALE_DOWN_INTERVAL", "300")

[performance] connection_pool_size: @env("CONNECTION_POOL_SIZE", "20") cache_ttl: @env("CACHE_TTL", "300") background_job_workers: @env("BACKGROUND_JOB_WORKERS", "5") read_replica_count: @env("READ_REPLICA_COUNT", "2")

🚀 Deployment Strategies

Blue-Green Deployment

lib/blue_green_deployment.rb

require 'tusk' require 'redis'

class BlueGreenDeployment def initialize(config_path = 'config/scaling.tsk') @config = Tusk.load(config_path) @redis = Redis.new(url: @config['redis']['url']) end

def deploy_new_version(version) # Determine current active environment current_env = get_current_environment new_env = current_env == 'blue' ? 'green' : 'blue'

# Deploy to new environment deploy_to_environment(new_env, version)

# Run health checks return false unless health_check_environment(new_env)

# Switch traffic switch_traffic(new_env)

# Clean up old environment cleanup_environment(current_env)

true end

def rollback current_env = get_current_environment previous_env = current_env == 'blue' ? 'green' : 'blue'

# Switch back to previous environment switch_traffic(previous_env)

# Clean up failed environment cleanup_environment(current_env) end

private

def get_current_environment @redis.get('deployment:current_environment') || 'blue' end

def deploy_to_environment(environment, version) # Implementation depends on deployment platform # Could use Kubernetes API, Docker API, etc. Rails.logger.info "Deploying version #{version} to #{environment} environment" end

def health_check_environment(environment) # Implement health checks for the environment # Return true if healthy, false otherwise true end

def switch_traffic(environment) @redis.set('deployment:current_environment', environment) Rails.logger.info "Switched traffic to #{environment} environment" end

def cleanup_environment(environment) # Clean up resources for the old environment Rails.logger.info "Cleaning up #{environment} environment" end end

🎯 Summary

This comprehensive guide covers scaling strategies with TuskLang and Ruby, including:

- Horizontal Scaling: Load balancers and instance management - Auto-Scaling: Dynamic scaling based on metrics and thresholds - Performance Monitoring: Comprehensive metrics collection and analysis - Connection Pooling: Advanced resource management and optimization - Caching Strategies: Multi-level caching for optimal performance - Background Jobs: Scalable job queue management - Database Scaling: Read replica load balancing - Configuration Management: Dynamic configuration updates - Deployment Strategies: Blue-green deployment and rollback

The scaling strategies with TuskLang provide a robust foundation for building applications that can handle massive scale while maintaining performance, reliability, and cost efficiency.