💎 AI Integration with TuskLang and Ruby

Ruby Documentation

AI Integration with TuskLang and Ruby

🧠 Intelligence Meets Innovation

TuskLang enables sophisticated AI integration for Ruby applications, providing natural language processing, computer vision, recommendation systems, and AI model management. Build applications that leverage the power of artificial intelligence to solve complex problems.

🚀 Quick Start: AI Platform Setup

Basic AI Configuration

config/ai.tsk

[ai] enabled: @env("AI_ENABLED", "true") platform: @env("AI_PLATFORM", "openai") # openai, azure, google, custom api_key: @env.secure("AI_API_KEY") model_cache: @env("AI_MODEL_CACHE", "true") rate_limiting: @env("AI_RATE_LIMITING", "true")

[natural_language_processing] enabled: @env("NLP_ENABLED", "true") language_detection: @env("LANGUAGE_DETECTION_ENABLED", "true") sentiment_analysis: @env("SENTIMENT_ANALYSIS_ENABLED", "true") text_generation: @env("TEXT_GENERATION_ENABLED", "true") translation: @env("TRANSLATION_ENABLED", "true")

[computer_vision] enabled: @env("COMPUTER_VISION_ENABLED", "true") image_recognition: @env("IMAGE_RECOGNITION_ENABLED", "true") object_detection: @env("OBJECT_DETECTION_ENABLED", "true") face_recognition: @env("FACE_RECOGNITION_ENABLED", "true") ocr: @env("OCR_ENABLED", "true")

[recommendation_systems] enabled: @env("RECOMMENDATION_SYSTEMS_ENABLED", "true") collaborative_filtering: @env("COLLABORATIVE_FILTERING_ENABLED", "true") content_based: @env("CONTENT_BASED_ENABLED", "true") hybrid: @env("HYBRID_RECOMMENDATIONS_ENABLED", "true")

AI Platform Implementation

lib/ai_platform.rb

require 'tusk' require 'redis' require 'json' require 'securerandom' require 'net/http' require 'uri'

class AIPlatform def initialize(config_path = 'config/ai.tsk') @config = Tusk.load(config_path) @redis = Redis.new(url: @config['redis']['url']) @models = {} @cache = {} setup_ai_platform end

def process_text(text, task_type, options = {}) return { success: false, error: 'AI disabled' } unless @config['ai']['enabled'] == 'true'

# Check cache first cache_key = generate_cache_key(text, task_type, options) cached_result = get_cached_result(cache_key) return cached_result if cached_result

case task_type when 'sentiment_analysis' result = perform_sentiment_analysis(text, options) when 'language_detection' result = perform_language_detection(text, options) when 'text_generation' result = perform_text_generation(text, options) when 'translation' result = perform_translation(text, options) when 'summarization' result = perform_summarization(text, options) when 'classification' result = perform_text_classification(text, options) else return { success: false, error: "Unknown task type: #{task_type}" } end

# Cache result cache_result(cache_key, result) if result[:success] && @config['ai']['model_cache'] == 'true'

result end

def process_image(image_data, task_type, options = {}) return { success: false, error: 'Computer vision disabled' } unless @config['computer_vision']['enabled'] == 'true'

# Check cache first cache_key = generate_image_cache_key(image_data, task_type, options) cached_result = get_cached_result(cache_key) return cached_result if cached_result

case task_type when 'image_recognition' result = perform_image_recognition(image_data, options) when 'object_detection' result = perform_object_detection(image_data, options) when 'face_recognition' result = perform_face_recognition(image_data, options) when 'ocr' result = perform_ocr(image_data, options) when 'image_classification' result = perform_image_classification(image_data, options) else return { success: false, error: "Unknown task type: #{task_type}" } end

# Cache result cache_result(cache_key, result) if result[:success] && @config['ai']['model_cache'] == 'true'

result end

def generate_recommendations(user_id, item_type, options = {}) return { success: false, error: 'Recommendation systems disabled' } unless @config['recommendation_systems']['enabled'] == 'true'

recommendations = []

# Collaborative filtering if @config['recommendation_systems']['collaborative_filtering'] == 'true' cf_recommendations = generate_collaborative_recommendations(user_id, item_type, options) recommendations.concat(cf_recommendations) end

# Content-based filtering if @config['recommendation_systems']['content_based'] == 'true' cb_recommendations = generate_content_based_recommendations(user_id, item_type, options) recommendations.concat(cb_recommendations) end

# Hybrid recommendations if @config['recommendation_systems']['hybrid'] == 'true' hybrid_recommendations = generate_hybrid_recommendations(user_id, item_type, options) recommendations.concat(hybrid_recommendations) end

# Remove duplicates and rank unique_recommendations = remove_duplicate_recommendations(recommendations) ranked_recommendations = rank_recommendations(unique_recommendations, user_id)

{ success: true, user_id: user_id, item_type: item_type, recommendations: ranked_recommendations, total_count: ranked_recommendations.length } end

def train_custom_model(model_config) model_id = SecureRandom.uuid model = { id: model_id, name: model_config[:name], type: model_config[:type], config: model_config, status: 'training', created_at: Time.now.iso8601, training_data: model_config[:training_data] || [] }

@models[model_id] = model @redis.hset('ai_models', model_id, model.to_json)

# Start training process Thread.new { train_model_async(model_id) }

{ success: true, model_id: model_id, status: 'training_started' } end

def get_model_status(model_id) return nil unless @models[model_id]

model = @models[model_id] { model_id: model_id, name: model[:name], type: model[:type], status: model[:status], created_at: model[:created_at], training_progress: get_training_progress(model_id), performance_metrics: get_model_performance(model_id) } end

def deploy_model(model_id, deployment_config = {}) return { success: false, error: 'Model not found' } unless @models[model_id]

model = @models[model_id] return { success: false, error: 'Model not ready' } unless model[:status] == 'trained'

deployment = { id: SecureRandom.uuid, model_id: model_id, endpoint: generate_model_endpoint(model_id), config: deployment_config, status: 'deploying', created_at: Time.now.iso8601 }

@redis.hset('model_deployments', deployment[:id], deployment.to_json)

# Deploy model Thread.new { deploy_model_async(deployment[:id]) }

{ success: true, deployment_id: deployment[:id], endpoint: deployment[:endpoint] } end

def get_ai_statistics { total_models: @models.length, trained_models: @models.count { |_, model| model[:status] == 'trained' }, deployed_models: get_deployed_models_count, total_requests: get_total_requests, cache_hit_rate: get_cache_hit_rate, average_response_time: get_average_response_time } end

private

def setup_ai_platform # Initialize AI platform components end

def perform_sentiment_analysis(text, options) begin # Implementation for sentiment analysis sentiment_score = analyze_sentiment(text) { success: true, text: text, sentiment: get_sentiment_label(sentiment_score), score: sentiment_score, confidence: calculate_confidence(sentiment_score) } rescue => e { success: false, error: "Sentiment analysis failed: #{e.message}" } end end

def perform_language_detection(text, options) begin # Implementation for language detection detected_language = detect_language(text) { success: true, text: text, language: detected_language[:language], confidence: detected_language[:confidence] } rescue => e { success: false, error: "Language detection failed: #{e.message}" } end end

def perform_text_generation(prompt, options) begin # Implementation for text generation generated_text = generate_text(prompt, options) { success: true, prompt: prompt, generated_text: generated_text, tokens_used: calculate_tokens(prompt, generated_text) } rescue => e { success: false, error: "Text generation failed: #{e.message}" } end end

def perform_translation(text, options) begin source_lang = options[:source_language] || 'auto' target_lang = options[:target_language] || 'en' # Implementation for translation translated_text = translate_text(text, source_lang, target_lang) { success: true, original_text: text, translated_text: translated_text, source_language: source_lang, target_language: target_lang } rescue => e { success: false, error: "Translation failed: #{e.message}" } end end

def perform_summarization(text, options) begin max_length = options[:max_length] || 150 # Implementation for summarization summary = summarize_text(text, max_length) { success: true, original_text: text, summary: summary, original_length: text.length, summary_length: summary.length } rescue => e { success: false, error: "Summarization failed: #{e.message}" } end end

def perform_text_classification(text, options) begin categories = options[:categories] || ['positive', 'negative', 'neutral'] # Implementation for text classification classification = classify_text(text, categories) { success: true, text: text, category: classification[:category], confidence: classification[:confidence], all_scores: classification[:scores] } rescue => e { success: false, error: "Text classification failed: #{e.message}" } end end

def perform_image_recognition(image_data, options) begin # Implementation for image recognition recognition_result = recognize_image(image_data) { success: true, image_data: image_data, objects: recognition_result[:objects], confidence: recognition_result[:confidence] } rescue => e { success: false, error: "Image recognition failed: #{e.message}" } end end

def perform_object_detection(image_data, options) begin # Implementation for object detection detection_result = detect_objects(image_data) { success: true, image_data: image_data, objects: detection_result[:objects], bounding_boxes: detection_result[:bounding_boxes], confidence: detection_result[:confidence] } rescue => e { success: false, error: "Object detection failed: #{e.message}" } end end

def perform_face_recognition(image_data, options) begin # Implementation for face recognition face_result = recognize_faces(image_data) { success: true, image_data: image_data, faces: face_result[:faces], landmarks: face_result[:landmarks], confidence: face_result[:confidence] } rescue => e { success: false, error: "Face recognition failed: #{e.message}" } end end

def perform_ocr(image_data, options) begin # Implementation for OCR ocr_result = extract_text_from_image(image_data) { success: true, image_data: image_data, extracted_text: ocr_result[:text], confidence: ocr_result[:confidence], bounding_boxes: ocr_result[:bounding_boxes] } rescue => e { success: false, error: "OCR failed: #{e.message}" } end end

def perform_image_classification(image_data, options) begin categories = options[:categories] || ['nature', 'technology', 'people', 'animals'] # Implementation for image classification classification = classify_image(image_data, categories) { success: true, image_data: image_data, category: classification[:category], confidence: classification[:confidence], all_scores: classification[:scores] } rescue => e { success: false, error: "Image classification failed: #{e.message}" } end end

def generate_collaborative_recommendations(user_id, item_type, options) # Implementation for collaborative filtering [] end

def generate_content_based_recommendations(user_id, item_type, options) # Implementation for content-based filtering [] end

def generate_hybrid_recommendations(user_id, item_type, options) # Implementation for hybrid recommendations [] end

def remove_duplicate_recommendations(recommendations) recommendations.uniq { |rec| rec[:item_id] } end

def rank_recommendations(recommendations, user_id) # Implementation for ranking recommendations recommendations.sort_by { |rec| rec[:score] }.reverse end

def train_model_async(model_id) # Implementation for async model training sleep(5) # Simulate training time model = @models[model_id] model[:status] = 'trained' model[:trained_at] = Time.now.iso8601 @redis.hset('ai_models', model_id, model.to_json) end

def deploy_model_async(deployment_id) # Implementation for async model deployment sleep(3) # Simulate deployment time deployment_data = @redis.hget('model_deployments', deployment_id) deployment = JSON.parse(deployment_data) deployment['status'] = 'deployed' deployment['deployed_at'] = Time.now.iso8601 @redis.hset('model_deployments', deployment_id, deployment.to_json) end

def generate_cache_key(text, task_type, options) "ai_cache:#{Digest::SHA256.hexdigest("#{text}#{task_type}#{options.to_json}")}" end

def generate_image_cache_key(image_data, task_type, options) "ai_cache:#{Digest::SHA256.hexdigest("#{image_data}#{task_type}#{options.to_json}")}" end

def get_cached_result(cache_key) cached_data = @redis.get(cache_key) return nil unless cached_data

JSON.parse(cached_data) end

def cache_result(cache_key, result) @redis.setex(cache_key, 3600, result.to_json) # 1 hour cache end

# Placeholder implementations for AI operations def analyze_sentiment(text) rand(-1.0..1.0) end

def get_sentiment_label(score) if score > 0.3 'positive' elsif score < -0.3 'negative' else 'neutral' end end

def calculate_confidence(score) (score.abs * 100).round(2) end

def detect_language(text) { language: ['en', 'es', 'fr', 'de'].sample, confidence: rand(0.8..0.99) } end

def generate_text(prompt, options) "Generated text based on: #{prompt}" end

def calculate_tokens(prompt, generated_text) prompt.length + generated_text.length end

def translate_text(text, source_lang, target_lang) "Translated text from #{source_lang} to #{target_lang}" end

def summarize_text(text, max_length) text[0, max_length] + "..." end

def classify_text(text, categories) { category: categories.sample, confidence: rand(0.8..0.99), scores: categories.map { |cat| [cat, rand(0.1..0.9)] }.to_h } end

def recognize_image(image_data) { objects: ['person', 'car', 'building'].sample(rand(1..3)), confidence: rand(0.8..0.99) } end

def detect_objects(image_data) { objects: ['person', 'car', 'building'].sample(rand(1..3)), bounding_boxes: [[10, 10, 100, 100]], confidence: rand(0.8..0.99) } end

def recognize_faces(image_data) { faces: rand(1..5), landmarks: [[10, 10], [20, 20]], confidence: rand(0.8..0.99) } end

def extract_text_from_image(image_data) { text: "Extracted text from image", confidence: rand(0.8..0.99), bounding_boxes: [[10, 10, 100, 100]] } end

def classify_image(image_data, categories) { category: categories.sample, confidence: rand(0.8..0.99), scores: categories.map { |cat| [cat, rand(0.1..0.9)] }.to_h } end

def get_training_progress(model_id) rand(0..100) end

def get_model_performance(model_id) { accuracy: rand(0.8..0.99), precision: rand(0.8..0.99), recall: rand(0.8..0.99) } end

def generate_model_endpoint(model_id) "https://api.example.com/ai/models/#{model_id}" end

def get_deployed_models_count @redis.hlen('model_deployments') end

def get_total_requests @redis.get('ai_total_requests').to_i end

def get_cache_hit_rate hits = @redis.get('ai_cache_hits').to_i misses = @redis.get('ai_cache_misses').to_i total = hits + misses return 0 if total == 0 (hits.to_f / total * 100).round(2) end

def get_average_response_time @redis.get('ai_avg_response_time').to_f end end

🎯 Configuration Management

AI Configuration

config/ai_features.tsk

[ai] enabled: @env("AI_ENABLED", "true") platform: @env("AI_PLATFORM", "openai") api_key: @env.secure("AI_API_KEY") model_cache: @env("AI_MODEL_CACHE", "true") rate_limiting: @env("AI_RATE_LIMITING", "true") timeout: @env("AI_TIMEOUT", "30")

[natural_language_processing] enabled: @env("NLP_ENABLED", "true") language_detection: @env("LANGUAGE_DETECTION_ENABLED", "true") sentiment_analysis: @env("SENTIMENT_ANALYSIS_ENABLED", "true") text_generation: @env("TEXT_GENERATION_ENABLED", "true") translation: @env("TRANSLATION_ENABLED", "true") summarization: @env("SUMMARIZATION_ENABLED", "true") classification: @env("TEXT_CLASSIFICATION_ENABLED", "true")

[computer_vision] enabled: @env("COMPUTER_VISION_ENABLED", "true") image_recognition: @env("IMAGE_RECOGNITION_ENABLED", "true") object_detection: @env("OBJECT_DETECTION_ENABLED", "true") face_recognition: @env("FACE_RECOGNITION_ENABLED", "true") ocr: @env("OCR_ENABLED", "true") image_classification: @env("IMAGE_CLASSIFICATION_ENABLED", "true")

[recommendation_systems] enabled: @env("RECOMMENDATION_SYSTEMS_ENABLED", "true") collaborative_filtering: @env("COLLABORATIVE_FILTERING_ENABLED", "true") content_based: @env("CONTENT_BASED_ENABLED", "true") hybrid: @env("HYBRID_RECOMMENDATIONS_ENABLED", "true") real_time_updates: @env("REAL_TIME_RECOMMENDATIONS", "true")

[model_management] enabled: @env("MODEL_MANAGEMENT_ENABLED", "true") auto_training: @env("AUTO_TRAINING_ENABLED", "true") model_versioning: @env("MODEL_VERSIONING_ENABLED", "true") a_b_testing: @env("A_B_TESTING_ENABLED", "true") performance_monitoring: @env("MODEL_PERFORMANCE_MONITORING", "true")

[security] encryption_enabled: @env("AI_ENCRYPTION_ENABLED", "true") data_privacy: @env("AI_DATA_PRIVACY_ENABLED", "true") access_control: @env("AI_ACCESS_CONTROL_ENABLED", "true") audit_logging: @env("AI_AUDIT_LOGGING_ENABLED", "true")

[monitoring] performance_monitoring: @env("AI_PERFORMANCE_MONITORING_ENABLED", "true") usage_tracking: @env("AI_USAGE_TRACKING_ENABLED", "true") cost_monitoring: @env("AI_COST_MONITORING_ENABLED", "true") alerting_enabled: @env("AI_ALERTING_ENABLED", "true")

🎯 Summary

This comprehensive guide covers AI integration with TuskLang and Ruby, including:

- AI Platform: Complete AI service integration and management - Natural Language Processing: Text analysis, generation, and translation - Computer Vision: Image recognition, object detection, and OCR - Recommendation Systems: Collaborative filtering and content-based recommendations - Model Management: Custom model training and deployment - Configuration Management: Enterprise-grade AI configuration - Security Features: Data privacy and access control - Monitoring: Performance and usage monitoring capabilities

The AI features with TuskLang provide a robust foundation for building intelligent applications that can process text, analyze images, generate recommendations, and manage custom AI models with enterprise-grade security and monitoring.