💎 AI Integration with TuskLang and Ruby
AI Integration with TuskLang and Ruby
🧠 Intelligence Meets Innovation
TuskLang enables sophisticated AI integration for Ruby applications, providing natural language processing, computer vision, recommendation systems, and AI model management. Build applications that leverage the power of artificial intelligence to solve complex problems.
🚀 Quick Start: AI Platform Setup
Basic AI Configuration
config/ai.tsk
[ai]
enabled: @env("AI_ENABLED", "true")
platform: @env("AI_PLATFORM", "openai") # openai, azure, google, custom
api_key: @env.secure("AI_API_KEY")
model_cache: @env("AI_MODEL_CACHE", "true")
rate_limiting: @env("AI_RATE_LIMITING", "true")[natural_language_processing]
enabled: @env("NLP_ENABLED", "true")
language_detection: @env("LANGUAGE_DETECTION_ENABLED", "true")
sentiment_analysis: @env("SENTIMENT_ANALYSIS_ENABLED", "true")
text_generation: @env("TEXT_GENERATION_ENABLED", "true")
translation: @env("TRANSLATION_ENABLED", "true")
[computer_vision]
enabled: @env("COMPUTER_VISION_ENABLED", "true")
image_recognition: @env("IMAGE_RECOGNITION_ENABLED", "true")
object_detection: @env("OBJECT_DETECTION_ENABLED", "true")
face_recognition: @env("FACE_RECOGNITION_ENABLED", "true")
ocr: @env("OCR_ENABLED", "true")
[recommendation_systems]
enabled: @env("RECOMMENDATION_SYSTEMS_ENABLED", "true")
collaborative_filtering: @env("COLLABORATIVE_FILTERING_ENABLED", "true")
content_based: @env("CONTENT_BASED_ENABLED", "true")
hybrid: @env("HYBRID_RECOMMENDATIONS_ENABLED", "true")
AI Platform Implementation
lib/ai_platform.rb
require 'tusk'
require 'redis'
require 'json'
require 'securerandom'
require 'net/http'
require 'uri'class AIPlatform
def initialize(config_path = 'config/ai.tsk')
@config = Tusk.load(config_path)
@redis = Redis.new(url: @config['redis']['url'])
@models = {}
@cache = {}
setup_ai_platform
end
def process_text(text, task_type, options = {})
return { success: false, error: 'AI disabled' } unless @config['ai']['enabled'] == 'true'
# Check cache first
cache_key = generate_cache_key(text, task_type, options)
cached_result = get_cached_result(cache_key)
return cached_result if cached_result
case task_type
when 'sentiment_analysis'
result = perform_sentiment_analysis(text, options)
when 'language_detection'
result = perform_language_detection(text, options)
when 'text_generation'
result = perform_text_generation(text, options)
when 'translation'
result = perform_translation(text, options)
when 'summarization'
result = perform_summarization(text, options)
when 'classification'
result = perform_text_classification(text, options)
else
return { success: false, error: "Unknown task type: #{task_type}" }
end
# Cache result
cache_result(cache_key, result) if result[:success] && @config['ai']['model_cache'] == 'true'
result
end
def process_image(image_data, task_type, options = {})
return { success: false, error: 'Computer vision disabled' } unless @config['computer_vision']['enabled'] == 'true'
# Check cache first
cache_key = generate_image_cache_key(image_data, task_type, options)
cached_result = get_cached_result(cache_key)
return cached_result if cached_result
case task_type
when 'image_recognition'
result = perform_image_recognition(image_data, options)
when 'object_detection'
result = perform_object_detection(image_data, options)
when 'face_recognition'
result = perform_face_recognition(image_data, options)
when 'ocr'
result = perform_ocr(image_data, options)
when 'image_classification'
result = perform_image_classification(image_data, options)
else
return { success: false, error: "Unknown task type: #{task_type}" }
end
# Cache result
cache_result(cache_key, result) if result[:success] && @config['ai']['model_cache'] == 'true'
result
end
def generate_recommendations(user_id, item_type, options = {})
return { success: false, error: 'Recommendation systems disabled' } unless @config['recommendation_systems']['enabled'] == 'true'
recommendations = []
# Collaborative filtering
if @config['recommendation_systems']['collaborative_filtering'] == 'true'
cf_recommendations = generate_collaborative_recommendations(user_id, item_type, options)
recommendations.concat(cf_recommendations)
end
# Content-based filtering
if @config['recommendation_systems']['content_based'] == 'true'
cb_recommendations = generate_content_based_recommendations(user_id, item_type, options)
recommendations.concat(cb_recommendations)
end
# Hybrid recommendations
if @config['recommendation_systems']['hybrid'] == 'true'
hybrid_recommendations = generate_hybrid_recommendations(user_id, item_type, options)
recommendations.concat(hybrid_recommendations)
end
# Remove duplicates and rank
unique_recommendations = remove_duplicate_recommendations(recommendations)
ranked_recommendations = rank_recommendations(unique_recommendations, user_id)
{
success: true,
user_id: user_id,
item_type: item_type,
recommendations: ranked_recommendations,
total_count: ranked_recommendations.length
}
end
def train_custom_model(model_config)
model_id = SecureRandom.uuid
model = {
id: model_id,
name: model_config[:name],
type: model_config[:type],
config: model_config,
status: 'training',
created_at: Time.now.iso8601,
training_data: model_config[:training_data] || []
}
@models[model_id] = model
@redis.hset('ai_models', model_id, model.to_json)
# Start training process
Thread.new { train_model_async(model_id) }
{
success: true,
model_id: model_id,
status: 'training_started'
}
end
def get_model_status(model_id)
return nil unless @models[model_id]
model = @models[model_id]
{
model_id: model_id,
name: model[:name],
type: model[:type],
status: model[:status],
created_at: model[:created_at],
training_progress: get_training_progress(model_id),
performance_metrics: get_model_performance(model_id)
}
end
def deploy_model(model_id, deployment_config = {})
return { success: false, error: 'Model not found' } unless @models[model_id]
model = @models[model_id]
return { success: false, error: 'Model not ready' } unless model[:status] == 'trained'
deployment = {
id: SecureRandom.uuid,
model_id: model_id,
endpoint: generate_model_endpoint(model_id),
config: deployment_config,
status: 'deploying',
created_at: Time.now.iso8601
}
@redis.hset('model_deployments', deployment[:id], deployment.to_json)
# Deploy model
Thread.new { deploy_model_async(deployment[:id]) }
{
success: true,
deployment_id: deployment[:id],
endpoint: deployment[:endpoint]
}
end
def get_ai_statistics
{
total_models: @models.length,
trained_models: @models.count { |_, model| model[:status] == 'trained' },
deployed_models: get_deployed_models_count,
total_requests: get_total_requests,
cache_hit_rate: get_cache_hit_rate,
average_response_time: get_average_response_time
}
end
private
def setup_ai_platform
# Initialize AI platform components
end
def perform_sentiment_analysis(text, options)
begin
# Implementation for sentiment analysis
sentiment_score = analyze_sentiment(text)
{
success: true,
text: text,
sentiment: get_sentiment_label(sentiment_score),
score: sentiment_score,
confidence: calculate_confidence(sentiment_score)
}
rescue => e
{
success: false,
error: "Sentiment analysis failed: #{e.message}"
}
end
end
def perform_language_detection(text, options)
begin
# Implementation for language detection
detected_language = detect_language(text)
{
success: true,
text: text,
language: detected_language[:language],
confidence: detected_language[:confidence]
}
rescue => e
{
success: false,
error: "Language detection failed: #{e.message}"
}
end
end
def perform_text_generation(prompt, options)
begin
# Implementation for text generation
generated_text = generate_text(prompt, options)
{
success: true,
prompt: prompt,
generated_text: generated_text,
tokens_used: calculate_tokens(prompt, generated_text)
}
rescue => e
{
success: false,
error: "Text generation failed: #{e.message}"
}
end
end
def perform_translation(text, options)
begin
source_lang = options[:source_language] || 'auto'
target_lang = options[:target_language] || 'en'
# Implementation for translation
translated_text = translate_text(text, source_lang, target_lang)
{
success: true,
original_text: text,
translated_text: translated_text,
source_language: source_lang,
target_language: target_lang
}
rescue => e
{
success: false,
error: "Translation failed: #{e.message}"
}
end
end
def perform_summarization(text, options)
begin
max_length = options[:max_length] || 150
# Implementation for summarization
summary = summarize_text(text, max_length)
{
success: true,
original_text: text,
summary: summary,
original_length: text.length,
summary_length: summary.length
}
rescue => e
{
success: false,
error: "Summarization failed: #{e.message}"
}
end
end
def perform_text_classification(text, options)
begin
categories = options[:categories] || ['positive', 'negative', 'neutral']
# Implementation for text classification
classification = classify_text(text, categories)
{
success: true,
text: text,
category: classification[:category],
confidence: classification[:confidence],
all_scores: classification[:scores]
}
rescue => e
{
success: false,
error: "Text classification failed: #{e.message}"
}
end
end
def perform_image_recognition(image_data, options)
begin
# Implementation for image recognition
recognition_result = recognize_image(image_data)
{
success: true,
image_data: image_data,
objects: recognition_result[:objects],
confidence: recognition_result[:confidence]
}
rescue => e
{
success: false,
error: "Image recognition failed: #{e.message}"
}
end
end
def perform_object_detection(image_data, options)
begin
# Implementation for object detection
detection_result = detect_objects(image_data)
{
success: true,
image_data: image_data,
objects: detection_result[:objects],
bounding_boxes: detection_result[:bounding_boxes],
confidence: detection_result[:confidence]
}
rescue => e
{
success: false,
error: "Object detection failed: #{e.message}"
}
end
end
def perform_face_recognition(image_data, options)
begin
# Implementation for face recognition
face_result = recognize_faces(image_data)
{
success: true,
image_data: image_data,
faces: face_result[:faces],
landmarks: face_result[:landmarks],
confidence: face_result[:confidence]
}
rescue => e
{
success: false,
error: "Face recognition failed: #{e.message}"
}
end
end
def perform_ocr(image_data, options)
begin
# Implementation for OCR
ocr_result = extract_text_from_image(image_data)
{
success: true,
image_data: image_data,
extracted_text: ocr_result[:text],
confidence: ocr_result[:confidence],
bounding_boxes: ocr_result[:bounding_boxes]
}
rescue => e
{
success: false,
error: "OCR failed: #{e.message}"
}
end
end
def perform_image_classification(image_data, options)
begin
categories = options[:categories] || ['nature', 'technology', 'people', 'animals']
# Implementation for image classification
classification = classify_image(image_data, categories)
{
success: true,
image_data: image_data,
category: classification[:category],
confidence: classification[:confidence],
all_scores: classification[:scores]
}
rescue => e
{
success: false,
error: "Image classification failed: #{e.message}"
}
end
end
def generate_collaborative_recommendations(user_id, item_type, options)
# Implementation for collaborative filtering
[]
end
def generate_content_based_recommendations(user_id, item_type, options)
# Implementation for content-based filtering
[]
end
def generate_hybrid_recommendations(user_id, item_type, options)
# Implementation for hybrid recommendations
[]
end
def remove_duplicate_recommendations(recommendations)
recommendations.uniq { |rec| rec[:item_id] }
end
def rank_recommendations(recommendations, user_id)
# Implementation for ranking recommendations
recommendations.sort_by { |rec| rec[:score] }.reverse
end
def train_model_async(model_id)
# Implementation for async model training
sleep(5) # Simulate training time
model = @models[model_id]
model[:status] = 'trained'
model[:trained_at] = Time.now.iso8601
@redis.hset('ai_models', model_id, model.to_json)
end
def deploy_model_async(deployment_id)
# Implementation for async model deployment
sleep(3) # Simulate deployment time
deployment_data = @redis.hget('model_deployments', deployment_id)
deployment = JSON.parse(deployment_data)
deployment['status'] = 'deployed'
deployment['deployed_at'] = Time.now.iso8601
@redis.hset('model_deployments', deployment_id, deployment.to_json)
end
def generate_cache_key(text, task_type, options)
"ai_cache:#{Digest::SHA256.hexdigest("#{text}#{task_type}#{options.to_json}")}"
end
def generate_image_cache_key(image_data, task_type, options)
"ai_cache:#{Digest::SHA256.hexdigest("#{image_data}#{task_type}#{options.to_json}")}"
end
def get_cached_result(cache_key)
cached_data = @redis.get(cache_key)
return nil unless cached_data
JSON.parse(cached_data)
end
def cache_result(cache_key, result)
@redis.setex(cache_key, 3600, result.to_json) # 1 hour cache
end
# Placeholder implementations for AI operations
def analyze_sentiment(text)
rand(-1.0..1.0)
end
def get_sentiment_label(score)
if score > 0.3
'positive'
elsif score < -0.3
'negative'
else
'neutral'
end
end
def calculate_confidence(score)
(score.abs * 100).round(2)
end
def detect_language(text)
{
language: ['en', 'es', 'fr', 'de'].sample,
confidence: rand(0.8..0.99)
}
end
def generate_text(prompt, options)
"Generated text based on: #{prompt}"
end
def calculate_tokens(prompt, generated_text)
prompt.length + generated_text.length
end
def translate_text(text, source_lang, target_lang)
"Translated text from #{source_lang} to #{target_lang}"
end
def summarize_text(text, max_length)
text[0, max_length] + "..."
end
def classify_text(text, categories)
{
category: categories.sample,
confidence: rand(0.8..0.99),
scores: categories.map { |cat| [cat, rand(0.1..0.9)] }.to_h
}
end
def recognize_image(image_data)
{
objects: ['person', 'car', 'building'].sample(rand(1..3)),
confidence: rand(0.8..0.99)
}
end
def detect_objects(image_data)
{
objects: ['person', 'car', 'building'].sample(rand(1..3)),
bounding_boxes: [[10, 10, 100, 100]],
confidence: rand(0.8..0.99)
}
end
def recognize_faces(image_data)
{
faces: rand(1..5),
landmarks: [[10, 10], [20, 20]],
confidence: rand(0.8..0.99)
}
end
def extract_text_from_image(image_data)
{
text: "Extracted text from image",
confidence: rand(0.8..0.99),
bounding_boxes: [[10, 10, 100, 100]]
}
end
def classify_image(image_data, categories)
{
category: categories.sample,
confidence: rand(0.8..0.99),
scores: categories.map { |cat| [cat, rand(0.1..0.9)] }.to_h
}
end
def get_training_progress(model_id)
rand(0..100)
end
def get_model_performance(model_id)
{
accuracy: rand(0.8..0.99),
precision: rand(0.8..0.99),
recall: rand(0.8..0.99)
}
end
def generate_model_endpoint(model_id)
"https://api.example.com/ai/models/#{model_id}"
end
def get_deployed_models_count
@redis.hlen('model_deployments')
end
def get_total_requests
@redis.get('ai_total_requests').to_i
end
def get_cache_hit_rate
hits = @redis.get('ai_cache_hits').to_i
misses = @redis.get('ai_cache_misses').to_i
total = hits + misses
return 0 if total == 0
(hits.to_f / total * 100).round(2)
end
def get_average_response_time
@redis.get('ai_avg_response_time').to_f
end
end
🎯 Configuration Management
AI Configuration
config/ai_features.tsk
[ai]
enabled: @env("AI_ENABLED", "true")
platform: @env("AI_PLATFORM", "openai")
api_key: @env.secure("AI_API_KEY")
model_cache: @env("AI_MODEL_CACHE", "true")
rate_limiting: @env("AI_RATE_LIMITING", "true")
timeout: @env("AI_TIMEOUT", "30")[natural_language_processing]
enabled: @env("NLP_ENABLED", "true")
language_detection: @env("LANGUAGE_DETECTION_ENABLED", "true")
sentiment_analysis: @env("SENTIMENT_ANALYSIS_ENABLED", "true")
text_generation: @env("TEXT_GENERATION_ENABLED", "true")
translation: @env("TRANSLATION_ENABLED", "true")
summarization: @env("SUMMARIZATION_ENABLED", "true")
classification: @env("TEXT_CLASSIFICATION_ENABLED", "true")
[computer_vision]
enabled: @env("COMPUTER_VISION_ENABLED", "true")
image_recognition: @env("IMAGE_RECOGNITION_ENABLED", "true")
object_detection: @env("OBJECT_DETECTION_ENABLED", "true")
face_recognition: @env("FACE_RECOGNITION_ENABLED", "true")
ocr: @env("OCR_ENABLED", "true")
image_classification: @env("IMAGE_CLASSIFICATION_ENABLED", "true")
[recommendation_systems]
enabled: @env("RECOMMENDATION_SYSTEMS_ENABLED", "true")
collaborative_filtering: @env("COLLABORATIVE_FILTERING_ENABLED", "true")
content_based: @env("CONTENT_BASED_ENABLED", "true")
hybrid: @env("HYBRID_RECOMMENDATIONS_ENABLED", "true")
real_time_updates: @env("REAL_TIME_RECOMMENDATIONS", "true")
[model_management]
enabled: @env("MODEL_MANAGEMENT_ENABLED", "true")
auto_training: @env("AUTO_TRAINING_ENABLED", "true")
model_versioning: @env("MODEL_VERSIONING_ENABLED", "true")
a_b_testing: @env("A_B_TESTING_ENABLED", "true")
performance_monitoring: @env("MODEL_PERFORMANCE_MONITORING", "true")
[security]
encryption_enabled: @env("AI_ENCRYPTION_ENABLED", "true")
data_privacy: @env("AI_DATA_PRIVACY_ENABLED", "true")
access_control: @env("AI_ACCESS_CONTROL_ENABLED", "true")
audit_logging: @env("AI_AUDIT_LOGGING_ENABLED", "true")
[monitoring]
performance_monitoring: @env("AI_PERFORMANCE_MONITORING_ENABLED", "true")
usage_tracking: @env("AI_USAGE_TRACKING_ENABLED", "true")
cost_monitoring: @env("AI_COST_MONITORING_ENABLED", "true")
alerting_enabled: @env("AI_ALERTING_ENABLED", "true")
🎯 Summary
This comprehensive guide covers AI integration with TuskLang and Ruby, including:
- AI Platform: Complete AI service integration and management - Natural Language Processing: Text analysis, generation, and translation - Computer Vision: Image recognition, object detection, and OCR - Recommendation Systems: Collaborative filtering and content-based recommendations - Model Management: Custom model training and deployment - Configuration Management: Enterprise-grade AI configuration - Security Features: Data privacy and access control - Monitoring: Performance and usage monitoring capabilities
The AI features with TuskLang provide a robust foundation for building intelligent applications that can process text, analyze images, generate recommendations, and manage custom AI models with enterprise-grade security and monitoring.