💎 🔗 Function Composition in TuskLang - Ruby Edition
🔗 Function Composition in TuskLang - Ruby Edition
"We don't bow to any king" - Ruby Edition
TuskLang's function composition provides powerful functional programming capabilities that integrate seamlessly with Ruby's rich functional features, enabling dynamic function chaining, transformation pipelines, and intelligent data processing workflows.
🎯 Overview
Function composition in TuskLang allows you to combine multiple functions into powerful transformation pipelines, enabling complex data processing, validation chains, and business logic workflows. When combined with Ruby's functional programming capabilities, these operations become incredibly versatile.
🚀 Basic Function Composition
Simple Function Chaining
TuskLang configuration with function composition
tsk_content = <<~TSK
[function_composition]
# Basic function chaining
processed_user: @pipe(@env("USER_INPUT"), [
@trim,
@lower,
@replace(" ", " ")
])
# Data transformation pipeline
user_data_pipeline: @pipe(@query("SELECT name, email FROM users WHERE id = ?", @env("USER_ID")), [
@validate_user_data,
@sanitize_user_data,
@format_user_data
])
# Configuration processing
config_pipeline: @pipe(@env("RAW_CONFIG"), [
@parse_json,
@validate_config_schema,
@apply_defaults,
@encrypt_sensitive_data
])
TSKRuby integration
require 'tusklang'parser = TuskLang.new
config = parser.parse(tsk_content)
Use in Ruby classes
class FunctionComposer
def initialize(tusk_config)
@config = tusk_config
end
def get_processed_user
@config['function_composition']['processed_user']
end
def get_user_data_pipeline
@config['function_composition']['user_data_pipeline']
end
def get_config_pipeline
@config['function_composition']['config_pipeline']
end
def process_user_input(input)
# Simulate the TuskLang pipeline in Ruby
input.to_s.strip.downcase.gsub(/\s+/, ' ')
end
def process_user_data(user_data)
# Simulate the user data pipeline
validated = validate_user_data(user_data)
sanitized = sanitize_user_data(validated)
format_user_data(sanitized)
end
private
def validate_user_data(data)
# Validation logic
data
end
def sanitize_user_data(data)
# Sanitization logic
data
end
def format_user_data(data)
# Formatting logic
data
end
endUsage
composer = FunctionComposer.new(config)
puts composer.process_user_input(" JOHN DOE ")
Conditional Function Composition
TuskLang with conditional composition
tsk_content = <<~TSK
[conditional_composition]
# Conditional function chains
conditional_user_processing: @when(@env("IS_ADMIN") == "true",
@pipe(@env("USER_INPUT"), [@validate_admin, @process_admin, @log_admin_action]),
@pipe(@env("USER_INPUT"), [@validate_user, @process_user, @log_user_action])
)
# Environment-specific pipelines
production_pipeline: @when(@env("RAILS_ENV") == "production",
@pipe(@data, [@validate, @sanitize, @encrypt, @log]),
@pipe(@data, [@validate, @log])
)
# Feature flag based composition
feature_enabled_pipeline: @when(@env("NEW_FEATURE_ENABLED") == "true",
@pipe(@user_data, [@legacy_validation, @new_validation, @enhanced_processing]),
@pipe(@user_data, [@legacy_validation, @legacy_processing])
)
TSKRuby integration with conditional composition
class ConditionalComposer
def initialize(tusk_config)
@config = tusk_config
end
def get_conditional_user_processing
@config['conditional_composition']['conditional_user_processing']
end
def get_production_pipeline
@config['conditional_composition']['production_pipeline']
end
def get_feature_enabled_pipeline
@config['conditional_composition']['feature_enabled_pipeline']
end
def process_user_conditionally(user_input, is_admin)
if is_admin
pipe(user_input, [:validate_admin, :process_admin, :log_admin_action])
else
pipe(user_input, [:validate_user, :process_user, :log_user_action])
end
end
def process_data_for_environment(data, environment)
if environment == 'production'
pipe(data, [:validate, :sanitize, :encrypt, :log])
else
pipe(data, [:validate, :log])
end
end
private
def pipe(data, functions)
functions.reduce(data) { |result, func| send(func, result) }
end
def validate_admin(data)
# Admin validation logic
data
end
def process_admin(data)
# Admin processing logic
data
end
def log_admin_action(data)
# Admin logging logic
data
end
def validate_user(data)
# User validation logic
data
end
def process_user(data)
# User processing logic
data
end
def log_user_action(data)
# User logging logic
data
end
end
🔧 Advanced Function Composition
Complex Transformation Pipelines
TuskLang with complex pipelines
tsk_content = <<~TSK
[complex_pipelines]
# Multi-stage data processing
data_processing_pipeline: @pipe(@raw_data, [
@parse_input,
@validate_schema,
@transform_data,
@apply_business_rules,
@sanitize_output,
@format_response
])
# Error handling pipeline
error_safe_pipeline: @try_catch(@pipe(@user_input, [
@parse_json,
@validate_data,
@process_data
]), @handle_error)
# Parallel processing pipeline
parallel_pipeline: @parallel([
@pipe(@user_data, [@validate, @process]),
@pipe(@user_data, [@analyze, @report]),
@pipe(@user_data, [@audit, @log])
])
TSKRuby integration with complex pipelines
class ComplexPipelineProcessor
def initialize(tusk_config)
@config = tusk_config
end
def get_data_processing_pipeline
@config['complex_pipelines']['data_processing_pipeline']
end
def get_error_safe_pipeline
@config['complex_pipelines']['error_safe_pipeline']
end
def get_parallel_pipeline
@config['complex_pipelines']['parallel_pipeline']
end
def process_data_pipeline(raw_data)
pipe(raw_data, [
:parse_input,
:validate_schema,
:transform_data,
:apply_business_rules,
:sanitize_output,
:format_response
])
end
def process_with_error_handling(user_input)
begin
pipe(user_input, [:parse_json, :validate_data, :process_data])
rescue => e
handle_error(e)
end
end
def process_in_parallel(user_data)
results = []
# Simulate parallel processing
threads = [
Thread.new { results << pipe(user_data, [:validate, :process]) },
Thread.new { results << pipe(user_data, [:analyze, :report]) },
Thread.new { results << pipe(user_data, [:audit, :log]) }
]
threads.each(&:join)
results
end
private
def pipe(data, functions)
functions.reduce(data) { |result, func| send(func, result) }
end
def parse_input(data)
# Parse input logic
data
end
def validate_schema(data)
# Schema validation logic
data
end
def transform_data(data)
# Data transformation logic
data
end
def apply_business_rules(data)
# Business rules logic
data
end
def sanitize_output(data)
# Output sanitization logic
data
end
def format_response(data)
# Response formatting logic
data
end
def handle_error(error)
Rails.logger.error "Pipeline error: #{error.message}"
{ error: error.message, status: 'failed' }
end
end
Function Composition with State
TuskLang with stateful composition
tsk_content = <<~TSK
[stateful_composition]
# Stateful function composition
stateful_pipeline: @with_state(@initial_state, @pipe(@data, [
@update_state("step1"),
@process_data,
@update_state("step2"),
@validate_result,
@update_state("complete")
]))
# Accumulator pattern
accumulator_pipeline: @reduce(@data_array, @initial_value, [
@accumulate_data,
@transform_accumulated,
@validate_accumulated
])
# Context-aware composition
context_pipeline: @with_context(@create_context, @pipe(@user_data, [
@set_user_context,
@process_with_context,
@log_with_context,
@clear_context
]))
TSKRuby integration with stateful composition
class StatefulComposer
def initialize(tusk_config)
@config = tusk_config
end
def get_stateful_pipeline
@config['stateful_composition']['stateful_pipeline']
end
def get_accumulator_pipeline
@config['stateful_composition']['accumulator_pipeline']
end
def get_context_pipeline
@config['stateful_composition']['context_pipeline']
end
def process_with_state(data, initial_state)
state = initial_state.dup
pipe_with_state(data, state, [
->(data, state) { [data, update_state(state, "step1")] },
->(data, state) { [process_data(data), state] },
->(data, state) { [data, update_state(state, "step2")] },
->(data, state) { [validate_result(data), state] },
->(data, state) { [data, update_state(state, "complete")] }
])
end
def process_with_accumulator(data_array, initial_value)
data_array.reduce(initial_value) do |accumulator, data|
accumulated = accumulate_data(accumulator, data)
transformed = transform_accumulated(accumulated)
validate_accumulated(transformed)
end
end
def process_with_context(user_data)
context = create_context
pipe_with_context(user_data, context, [
->(data, context) { [data, set_user_context(context, data)] },
->(data, context) { [process_with_context(data, context), context] },
->(data, context) { [data, log_with_context(context, data)] },
->(data, context) { [data, clear_context(context)] }
])
end
private
def pipe_with_state(data, state, functions)
functions.reduce([data, state]) { |(data, state), func| func.call(data, state) }
end
def pipe_with_context(data, context, functions)
functions.reduce([data, context]) { |(data, context), func| func.call(data, context) }
end
def update_state(state, step)
state.merge({ current_step: step, updated_at: Time.current })
end
def process_data(data)
# Process data logic
data
end
def validate_result(data)
# Validation logic
data
end
def accumulate_data(accumulator, data)
# Accumulation logic
accumulator + data
end
def transform_accumulated(accumulated)
# Transformation logic
accumulated
end
def validate_accumulated(transformed)
# Validation logic
transformed
end
def create_context
{ session_id: SecureRandom.uuid, created_at: Time.current }
end
def set_user_context(context, user_data)
context.merge({ user_id: user_data[:id] })
end
def process_with_context(data, context)
# Context-aware processing
data
end
def log_with_context(context, data)
Rails.logger.info "Processing with context: #{context}"
context
end
def clear_context(context)
context.merge({ cleared_at: Time.current })
end
end
🎛️ Higher-Order Functions
Function Factories and Currying
TuskLang with higher-order functions
tsk_content = <<~TSK
[higher_order_functions]
# Function factory
create_validator: @factory(@validation_rules, @create_validation_function)
# Curried functions
curried_processor: @curry(@process_data, @env("PROCESSING_MODE"))
curried_validator: @curry(@validate_data, @env("VALIDATION_LEVEL"))
# Partial application
partial_processor: @partial(@process_user_data, @env("USER_ROLE"))
partial_logger: @partial(@log_action, @env("LOG_LEVEL"))
# Function composition with curried functions
composed_processor: @compose(@curried_processor, @curried_validator, @partial_logger)
TSKRuby integration with higher-order functions
class HigherOrderFunctionProcessor
def initialize(tusk_config)
@config = tusk_config
end
def get_create_validator
@config['higher_order_functions']['create_validator']
end
def get_curried_processor
@config['higher_order_functions']['curried_processor']
end
def get_composed_processor
@config['higher_order_functions']['composed_processor']
end
def create_validator_factory(validation_rules)
->(data) { validate_with_rules(data, validation_rules) }
end
def curry_processor(processing_mode)
->(data) { process_data(data, processing_mode) }
end
def curry_validator(validation_level)
->(data) { validate_data(data, validation_level) }
end
def partial_processor(user_role)
->(data) { process_user_data(data, user_role) }
end
def compose_processors(*functions)
->(data) { functions.reduce(data) { |result, func| func.call(result) } }
end
def process_with_composition(data)
processor = curry_processor(ENV['PROCESSING_MODE'])
validator = curry_validator(ENV['VALIDATION_LEVEL'])
logger = partial_processor(ENV['USER_ROLE'])
composed = compose_processors(processor, validator, logger)
composed.call(data)
end
private
def validate_with_rules(data, rules)
# Validation logic with rules
data
end
def process_data(data, mode)
# Processing logic with mode
data
end
def validate_data(data, level)
# Validation logic with level
data
end
def process_user_data(data, role)
# User processing logic with role
data
end
end
Monadic Function Composition
TuskLang with monadic composition
tsk_content = <<~TSK
[monadic_composition]
# Maybe monad composition
maybe_pipeline: @maybe(@user_data, [
@parse_user_data,
@validate_user_data,
@process_user_data,
@format_user_data
])
# Either monad composition
either_pipeline: @either(@user_input, [
@parse_input,
@validate_input,
@process_input
], @handle_error)
# Result monad composition
result_pipeline: @result(@data_operation, [
@validate_result,
@transform_result,
@format_result
])
TSKRuby integration with monadic composition
class MonadicComposer
def initialize(tusk_config)
@config = tusk_config
end
def get_maybe_pipeline
@config['monadic_composition']['maybe_pipeline']
end
def get_either_pipeline
@config['monadic_composition']['either_pipeline']
end
def get_result_pipeline
@config['monadic_composition']['result_pipeline']
end
def process_maybe_pipeline(user_data)
return nil if user_data.nil?
result = user_data
result = parse_user_data(result) if result
result = validate_user_data(result) if result
result = process_user_data(result) if result
result = format_user_data(result) if result
result
end
def process_either_pipeline(user_input)
begin
result = user_input
result = parse_input(result)
result = validate_input(result)
result = process_input(result)
{ success: true, data: result }
rescue => e
{ success: false, error: handle_error(e) }
end
end
def process_result_pipeline(data_operation)
result = data_operation
return { success: false, error: result } if result.is_a?(Exception)
result = validate_result(result)
result = transform_result(result)
result = format_result(result)
{ success: true, data: result }
end
private
def parse_user_data(data)
# Parse logic
data
end
def validate_user_data(data)
# Validation logic
data
end
def process_user_data(data)
# Processing logic
data
end
def format_user_data(data)
# Formatting logic
data
end
def parse_input(input)
# Parse logic
input
end
def validate_input(input)
# Validation logic
input
end
def process_input(input)
# Processing logic
input
end
def handle_error(error)
Rails.logger.error "Pipeline error: #{error.message}"
error.message
end
def validate_result(result)
# Result validation logic
result
end
def transform_result(result)
# Result transformation logic
result
end
def format_result(result)
# Result formatting logic
result
end
end
🔄 Dynamic Function Composition
Runtime Function Composition
TuskLang with runtime composition
tsk_content = <<~TSK
[runtime_composition]
# Dynamic function selection
dynamic_pipeline: @compose_dynamic(@user_data, @get_pipeline_config(@env("PIPELINE_TYPE")))
# Plugin-based composition
plugin_pipeline: @compose_plugins(@user_data, @get_enabled_plugins())
# Configuration-driven composition
config_pipeline: @compose_from_config(@user_data, @load_pipeline_config(@env("CONFIG_PATH")))
# A/B testing composition
ab_test_pipeline: @ab_test_compose(@user_data, @get_experiment_config(@env("EXPERIMENT_ID")))
TSKRuby integration with runtime composition
class RuntimeComposer
def initialize(tusk_config)
@config = tusk_config
end
def get_dynamic_pipeline
@config['runtime_composition']['dynamic_pipeline']
end
def get_plugin_pipeline
@config['runtime_composition']['plugin_pipeline']
end
def get_config_pipeline
@config['runtime_composition']['config_pipeline']
end
def get_ab_test_pipeline
@config['runtime_composition']['ab_test_pipeline']
end
def process_dynamic_pipeline(user_data, pipeline_type)
pipeline_config = get_pipeline_config(pipeline_type)
compose_and_execute(user_data, pipeline_config)
end
def process_plugin_pipeline(user_data)
enabled_plugins = get_enabled_plugins
compose_and_execute(user_data, enabled_plugins)
end
def process_config_pipeline(user_data, config_path)
pipeline_config = load_pipeline_config(config_path)
compose_and_execute(user_data, pipeline_config)
end
def process_ab_test_pipeline(user_data, experiment_id)
experiment_config = get_experiment_config(experiment_id)
variant = select_variant(experiment_config)
compose_and_execute(user_data, variant)
end
private
def compose_and_execute(data, functions)
functions.reduce(data) { |result, func| send(func, result) }
end
def get_pipeline_config(type)
case type
when 'simple'
[:validate, :process, :format]
when 'complex'
[:validate, :sanitize, :process, :transform, :format]
else
[:validate, :process]
end
end
def get_enabled_plugins
# Get enabled plugins from configuration
[:plugin_validate, :plugin_process, :plugin_log]
end
def load_pipeline_config(path)
# Load pipeline configuration from file
[:load_validate, :load_process, :load_format]
end
def get_experiment_config(experiment_id)
# Get A/B test configuration
{
variant_a: [:validate_a, :process_a],
variant_b: [:validate_b, :process_b]
}
end
def select_variant(config)
# Select A/B test variant
rand < 0.5 ? config[:variant_a] : config[:variant_b]
end
end
🛡️ Error Handling and Validation
Function Composition Error Handling
TuskLang with error handling
tsk_content = <<~TSK
[error_handling]
# Error handling in composition
safe_pipeline: @try_catch(@pipe(@user_data, [
@parse_data,
@validate_data,
@process_data
]), @handle_pipeline_error)
# Retry logic in composition
retry_pipeline: @retry(@pipe(@api_call, [
@validate_response,
@process_response
]), 3, @exponential_backoff)
# Circuit breaker pattern
circuit_breaker_pipeline: @circuit_breaker(@pipe(@external_service, [
@call_service,
@process_result
]), @handle_service_failure)
TSKRuby integration with error handling
class ErrorHandlingComposer
def initialize(tusk_config)
@config = tusk_config
end
def get_safe_pipeline
@config['error_handling']['safe_pipeline']
end
def get_retry_pipeline
@config['error_handling']['retry_pipeline']
end
def get_circuit_breaker_pipeline
@config['error_handling']['circuit_breaker_pipeline']
end
def process_safe_pipeline(user_data)
begin
pipe(user_data, [:parse_data, :validate_data, :process_data])
rescue => e
handle_pipeline_error(e)
end
end
def process_retry_pipeline(api_call)
retries = 0
max_retries = 3
begin
pipe(api_call, [:validate_response, :process_response])
rescue => e
retries += 1
if retries <= max_retries
sleep(exponential_backoff(retries))
retry
else
raise e
end
end
end
def process_circuit_breaker_pipeline(external_service)
if circuit_open?
handle_service_failure("Circuit breaker is open")
else
begin
result = pipe(external_service, [:call_service, :process_result])
reset_circuit
result
rescue => e
record_failure
handle_service_failure(e)
end
end
end
private
def pipe(data, functions)
functions.reduce(data) { |result, func| send(func, result) }
end
def parse_data(data)
# Parse logic
data
end
def validate_data(data)
# Validation logic
data
end
def process_data(data)
# Processing logic
data
end
def handle_pipeline_error(error)
Rails.logger.error "Pipeline error: #{error.message}"
{ error: error.message, status: 'failed' }
end
def validate_response(response)
# Response validation logic
response
end
def process_response(response)
# Response processing logic
response
end
def exponential_backoff(retry_count)
2 ** retry_count
end
def call_service(service)
# Service call logic
service
end
def process_result(result)
# Result processing logic
result
end
def handle_service_failure(error)
Rails.logger.error "Service failure: #{error}"
{ error: error.to_s, status: 'service_failed' }
end
def circuit_open?
# Circuit breaker logic
false
end
def record_failure
# Record failure logic
end
def reset_circuit
# Reset circuit logic
end
end
🚀 Performance Optimization
Efficient Function Composition
TuskLang with performance optimizations
tsk_content = <<~TSK
[optimized_composition]
# Cached function composition
cached_pipeline: @cache("5m", @pipe(@user_data, [
@expensive_validation,
@expensive_processing,
@expensive_formatting
]))
# Lazy evaluation in composition
lazy_pipeline: @lazy(@pipe(@user_data, [
@expensive_operation,
@another_expensive_operation
]))
# Parallel function composition
parallel_pipeline: @parallel_compose(@user_data, [
@independent_operation_1,
@independent_operation_2,
@independent_operation_3
])
# Streaming composition
stream_pipeline: @stream_compose(@large_dataset, [
@process_chunk,
@validate_chunk,
@format_chunk
])
TSKRuby integration with optimized composition
class OptimizedComposer
def initialize(tusk_config)
@config = tusk_config
end
def get_cached_pipeline
@config['optimized_composition']['cached_pipeline']
end
def get_lazy_pipeline
@config['optimized_composition']['lazy_pipeline']
end
def get_parallel_pipeline
@config['optimized_composition']['parallel_pipeline']
end
def get_stream_pipeline
@config['optimized_composition']['stream_pipeline']
end
def process_cached_pipeline(user_data)
Rails.cache.fetch("pipeline_#{user_data.hash}", expires_in: 5.minutes) do
pipe(user_data, [:expensive_validation, :expensive_processing, :expensive_formatting])
end
end
def process_lazy_pipeline(user_data)
# Lazy evaluation using Ruby's Enumerator
Enumerator.new do |yielder|
result = user_data
result = expensive_operation(result)
yielder << result
result = another_expensive_operation(result)
yielder << result
end
end
def process_parallel_pipeline(user_data)
threads = [
Thread.new { independent_operation_1(user_data) },
Thread.new { independent_operation_2(user_data) },
Thread.new { independent_operation_3(user_data) }
]
threads.map(&:value)
end
def process_stream_pipeline(large_dataset)
large_dataset.each_slice(1000) do |chunk|
result = pipe(chunk, [:process_chunk, :validate_chunk, :format_chunk])
yield result if block_given?
end
end
private
def pipe(data, functions)
functions.reduce(data) { |result, func| send(func, result) }
end
def expensive_validation(data)
# Expensive validation logic
sleep(0.1) # Simulate expensive operation
data
end
def expensive_processing(data)
# Expensive processing logic
sleep(0.1) # Simulate expensive operation
data
end
def expensive_formatting(data)
# Expensive formatting logic
sleep(0.1) # Simulate expensive operation
data
end
def expensive_operation(data)
# Expensive operation logic
data
end
def another_expensive_operation(data)
# Another expensive operation logic
data
end
def independent_operation_1(data)
# Independent operation 1
data
end
def independent_operation_2(data)
# Independent operation 2
data
end
def independent_operation_3(data)
# Independent operation 3
data
end
def process_chunk(chunk)
# Process chunk logic
chunk
end
def validate_chunk(chunk)
# Validate chunk logic
chunk
end
def format_chunk(chunk)
# Format chunk logic
chunk
end
end
🎯 Best Practices
1. Use Descriptive Function Names
Good
user_processing_pipeline: @pipe(@user_data, [@validate_user_input, @process_user_data, @format_user_response])
data_transformation_chain: @compose(@parse_data, @validate_data, @transform_data)Avoid
pipeline: @pipe(@data, [@func1, @func2, @func3])
chain: @compose(@f1, @f2, @f3)
2. Handle Errors Gracefully
TuskLang with error handling
tsk_content = <<~TSK
[error_handling_best_practices]
# Always wrap pipelines in error handling
safe_pipeline: @try_catch(@pipe(@data, [@step1, @step2, @step3]), @handle_error)
# Use appropriate error handling for different scenarios
retry_pipeline: @retry(@pipe(@api_call, [@validate, @process]), 3, @backoff)
TSK
3. Use Caching for Expensive Operations
Cache expensive function compositions
expensive_pipeline: @cache("10m", @pipe(@data, [@expensive_step1, @expensive_step2]))
4. Keep Functions Pure When Possible
TuskLang with pure functions
tsk_content = <<~TSK
[pure_functions]
# Pure function composition
pure_pipeline: @pipe(@input_data, [
@pure_transform,
@pure_validate,
@pure_format
])
# Side effects isolated
side_effect_pipeline: @pipe(@data, [
@pure_process,
@side_effect_log,
@pure_format
])
TSK
🔧 Troubleshooting
Common Function Composition Issues
Issue: Function composition errors
Solution: Add proper error handling
tsk_content = <<~TSK
[error_fixes]
# Add error handling to all pipelines
safe_composition: @try_catch(@pipe(@data, [@step1, @step2]), @handle_error)
# Use Maybe monad for nullable data
maybe_composition: @maybe(@nullable_data, [@step1, @step2])
TSKIssue: Performance problems with large datasets
Solution: Use streaming and parallel processing
tsk_content = <<~TSK
[performance_fixes]
# Use streaming for large datasets
stream_composition: @stream_compose(@large_dataset, [@process, @validate])
# Use parallel processing for independent operations
parallel_composition: @parallel_compose(@data, [@op1, @op2, @op3])
TSKIssue: Complex function composition
Solution: Break into smaller, composable functions
tsk_content = <<~TSK
[complexity_fixes]
# Break complex pipelines into smaller parts
simple_pipeline_1: @pipe(@data, [@step1, @step2])
simple_pipeline_2: @pipe(@simple_pipeline_1, [@step3, @step4])
# Use function factories for reusable patterns
reusable_pipeline: @factory(@config, @create_pipeline)
TSK
🎯 Summary
TuskLang's function composition provides powerful functional programming capabilities that integrate seamlessly with Ruby applications. By leveraging these operations, you can:
- Create complex transformation pipelines dynamically in configuration files - Build reusable function patterns with factories and currying - Handle errors gracefully with monadic composition - Optimize performance with caching and parallel processing - Implement functional programming patterns in your Ruby applications
The Ruby integration makes these operations even more powerful by combining TuskLang's declarative syntax with Ruby's rich functional programming features and libraries.
Remember: TuskLang function composition is designed to be expressive, performant, and Ruby-friendly. Use it to create dynamic, efficient, and maintainable functional programming configurations.
Key Takeaways: - Always handle errors in function compositions - Use caching for expensive operations - Keep functions pure when possible - Break complex pipelines into smaller, composable parts - Combine with Ruby's functional programming libraries for advanced functionality