💎 🔗 Function Composition in TuskLang - Ruby Edition

Ruby Documentation

🔗 Function Composition in TuskLang - Ruby Edition

"We don't bow to any king" - Ruby Edition

TuskLang's function composition provides powerful functional programming capabilities that integrate seamlessly with Ruby's rich functional features, enabling dynamic function chaining, transformation pipelines, and intelligent data processing workflows.

🎯 Overview

Function composition in TuskLang allows you to combine multiple functions into powerful transformation pipelines, enabling complex data processing, validation chains, and business logic workflows. When combined with Ruby's functional programming capabilities, these operations become incredibly versatile.

🚀 Basic Function Composition

Simple Function Chaining

TuskLang configuration with function composition

tsk_content = <<~TSK [function_composition] # Basic function chaining processed_user: @pipe(@env("USER_INPUT"), [ @trim, @lower, @replace(" ", " ") ]) # Data transformation pipeline user_data_pipeline: @pipe(@query("SELECT name, email FROM users WHERE id = ?", @env("USER_ID")), [ @validate_user_data, @sanitize_user_data, @format_user_data ]) # Configuration processing config_pipeline: @pipe(@env("RAW_CONFIG"), [ @parse_json, @validate_config_schema, @apply_defaults, @encrypt_sensitive_data ]) TSK

Ruby integration

require 'tusklang'

parser = TuskLang.new config = parser.parse(tsk_content)

Use in Ruby classes

class FunctionComposer def initialize(tusk_config) @config = tusk_config end def get_processed_user @config['function_composition']['processed_user'] end def get_user_data_pipeline @config['function_composition']['user_data_pipeline'] end def get_config_pipeline @config['function_composition']['config_pipeline'] end def process_user_input(input) # Simulate the TuskLang pipeline in Ruby input.to_s.strip.downcase.gsub(/\s+/, ' ') end def process_user_data(user_data) # Simulate the user data pipeline validated = validate_user_data(user_data) sanitized = sanitize_user_data(validated) format_user_data(sanitized) end private def validate_user_data(data) # Validation logic data end def sanitize_user_data(data) # Sanitization logic data end def format_user_data(data) # Formatting logic data end end

Usage

composer = FunctionComposer.new(config) puts composer.process_user_input(" JOHN DOE ")

Conditional Function Composition

TuskLang with conditional composition

tsk_content = <<~TSK [conditional_composition] # Conditional function chains conditional_user_processing: @when(@env("IS_ADMIN") == "true", @pipe(@env("USER_INPUT"), [@validate_admin, @process_admin, @log_admin_action]), @pipe(@env("USER_INPUT"), [@validate_user, @process_user, @log_user_action]) ) # Environment-specific pipelines production_pipeline: @when(@env("RAILS_ENV") == "production", @pipe(@data, [@validate, @sanitize, @encrypt, @log]), @pipe(@data, [@validate, @log]) ) # Feature flag based composition feature_enabled_pipeline: @when(@env("NEW_FEATURE_ENABLED") == "true", @pipe(@user_data, [@legacy_validation, @new_validation, @enhanced_processing]), @pipe(@user_data, [@legacy_validation, @legacy_processing]) ) TSK

Ruby integration with conditional composition

class ConditionalComposer def initialize(tusk_config) @config = tusk_config end def get_conditional_user_processing @config['conditional_composition']['conditional_user_processing'] end def get_production_pipeline @config['conditional_composition']['production_pipeline'] end def get_feature_enabled_pipeline @config['conditional_composition']['feature_enabled_pipeline'] end def process_user_conditionally(user_input, is_admin) if is_admin pipe(user_input, [:validate_admin, :process_admin, :log_admin_action]) else pipe(user_input, [:validate_user, :process_user, :log_user_action]) end end def process_data_for_environment(data, environment) if environment == 'production' pipe(data, [:validate, :sanitize, :encrypt, :log]) else pipe(data, [:validate, :log]) end end private def pipe(data, functions) functions.reduce(data) { |result, func| send(func, result) } end def validate_admin(data) # Admin validation logic data end def process_admin(data) # Admin processing logic data end def log_admin_action(data) # Admin logging logic data end def validate_user(data) # User validation logic data end def process_user(data) # User processing logic data end def log_user_action(data) # User logging logic data end end

🔧 Advanced Function Composition

Complex Transformation Pipelines

TuskLang with complex pipelines

tsk_content = <<~TSK [complex_pipelines] # Multi-stage data processing data_processing_pipeline: @pipe(@raw_data, [ @parse_input, @validate_schema, @transform_data, @apply_business_rules, @sanitize_output, @format_response ]) # Error handling pipeline error_safe_pipeline: @try_catch(@pipe(@user_input, [ @parse_json, @validate_data, @process_data ]), @handle_error) # Parallel processing pipeline parallel_pipeline: @parallel([ @pipe(@user_data, [@validate, @process]), @pipe(@user_data, [@analyze, @report]), @pipe(@user_data, [@audit, @log]) ]) TSK

Ruby integration with complex pipelines

class ComplexPipelineProcessor def initialize(tusk_config) @config = tusk_config end def get_data_processing_pipeline @config['complex_pipelines']['data_processing_pipeline'] end def get_error_safe_pipeline @config['complex_pipelines']['error_safe_pipeline'] end def get_parallel_pipeline @config['complex_pipelines']['parallel_pipeline'] end def process_data_pipeline(raw_data) pipe(raw_data, [ :parse_input, :validate_schema, :transform_data, :apply_business_rules, :sanitize_output, :format_response ]) end def process_with_error_handling(user_input) begin pipe(user_input, [:parse_json, :validate_data, :process_data]) rescue => e handle_error(e) end end def process_in_parallel(user_data) results = [] # Simulate parallel processing threads = [ Thread.new { results << pipe(user_data, [:validate, :process]) }, Thread.new { results << pipe(user_data, [:analyze, :report]) }, Thread.new { results << pipe(user_data, [:audit, :log]) } ] threads.each(&:join) results end private def pipe(data, functions) functions.reduce(data) { |result, func| send(func, result) } end def parse_input(data) # Parse input logic data end def validate_schema(data) # Schema validation logic data end def transform_data(data) # Data transformation logic data end def apply_business_rules(data) # Business rules logic data end def sanitize_output(data) # Output sanitization logic data end def format_response(data) # Response formatting logic data end def handle_error(error) Rails.logger.error "Pipeline error: #{error.message}" { error: error.message, status: 'failed' } end end

Function Composition with State

TuskLang with stateful composition

tsk_content = <<~TSK [stateful_composition] # Stateful function composition stateful_pipeline: @with_state(@initial_state, @pipe(@data, [ @update_state("step1"), @process_data, @update_state("step2"), @validate_result, @update_state("complete") ])) # Accumulator pattern accumulator_pipeline: @reduce(@data_array, @initial_value, [ @accumulate_data, @transform_accumulated, @validate_accumulated ]) # Context-aware composition context_pipeline: @with_context(@create_context, @pipe(@user_data, [ @set_user_context, @process_with_context, @log_with_context, @clear_context ])) TSK

Ruby integration with stateful composition

class StatefulComposer def initialize(tusk_config) @config = tusk_config end def get_stateful_pipeline @config['stateful_composition']['stateful_pipeline'] end def get_accumulator_pipeline @config['stateful_composition']['accumulator_pipeline'] end def get_context_pipeline @config['stateful_composition']['context_pipeline'] end def process_with_state(data, initial_state) state = initial_state.dup pipe_with_state(data, state, [ ->(data, state) { [data, update_state(state, "step1")] }, ->(data, state) { [process_data(data), state] }, ->(data, state) { [data, update_state(state, "step2")] }, ->(data, state) { [validate_result(data), state] }, ->(data, state) { [data, update_state(state, "complete")] } ]) end def process_with_accumulator(data_array, initial_value) data_array.reduce(initial_value) do |accumulator, data| accumulated = accumulate_data(accumulator, data) transformed = transform_accumulated(accumulated) validate_accumulated(transformed) end end def process_with_context(user_data) context = create_context pipe_with_context(user_data, context, [ ->(data, context) { [data, set_user_context(context, data)] }, ->(data, context) { [process_with_context(data, context), context] }, ->(data, context) { [data, log_with_context(context, data)] }, ->(data, context) { [data, clear_context(context)] } ]) end private def pipe_with_state(data, state, functions) functions.reduce([data, state]) { |(data, state), func| func.call(data, state) } end def pipe_with_context(data, context, functions) functions.reduce([data, context]) { |(data, context), func| func.call(data, context) } end def update_state(state, step) state.merge({ current_step: step, updated_at: Time.current }) end def process_data(data) # Process data logic data end def validate_result(data) # Validation logic data end def accumulate_data(accumulator, data) # Accumulation logic accumulator + data end def transform_accumulated(accumulated) # Transformation logic accumulated end def validate_accumulated(transformed) # Validation logic transformed end def create_context { session_id: SecureRandom.uuid, created_at: Time.current } end def set_user_context(context, user_data) context.merge({ user_id: user_data[:id] }) end def process_with_context(data, context) # Context-aware processing data end def log_with_context(context, data) Rails.logger.info "Processing with context: #{context}" context end def clear_context(context) context.merge({ cleared_at: Time.current }) end end

🎛️ Higher-Order Functions

Function Factories and Currying

TuskLang with higher-order functions

tsk_content = <<~TSK [higher_order_functions] # Function factory create_validator: @factory(@validation_rules, @create_validation_function) # Curried functions curried_processor: @curry(@process_data, @env("PROCESSING_MODE")) curried_validator: @curry(@validate_data, @env("VALIDATION_LEVEL")) # Partial application partial_processor: @partial(@process_user_data, @env("USER_ROLE")) partial_logger: @partial(@log_action, @env("LOG_LEVEL")) # Function composition with curried functions composed_processor: @compose(@curried_processor, @curried_validator, @partial_logger) TSK

Ruby integration with higher-order functions

class HigherOrderFunctionProcessor def initialize(tusk_config) @config = tusk_config end def get_create_validator @config['higher_order_functions']['create_validator'] end def get_curried_processor @config['higher_order_functions']['curried_processor'] end def get_composed_processor @config['higher_order_functions']['composed_processor'] end def create_validator_factory(validation_rules) ->(data) { validate_with_rules(data, validation_rules) } end def curry_processor(processing_mode) ->(data) { process_data(data, processing_mode) } end def curry_validator(validation_level) ->(data) { validate_data(data, validation_level) } end def partial_processor(user_role) ->(data) { process_user_data(data, user_role) } end def compose_processors(*functions) ->(data) { functions.reduce(data) { |result, func| func.call(result) } } end def process_with_composition(data) processor = curry_processor(ENV['PROCESSING_MODE']) validator = curry_validator(ENV['VALIDATION_LEVEL']) logger = partial_processor(ENV['USER_ROLE']) composed = compose_processors(processor, validator, logger) composed.call(data) end private def validate_with_rules(data, rules) # Validation logic with rules data end def process_data(data, mode) # Processing logic with mode data end def validate_data(data, level) # Validation logic with level data end def process_user_data(data, role) # User processing logic with role data end end

Monadic Function Composition

TuskLang with monadic composition

tsk_content = <<~TSK [monadic_composition] # Maybe monad composition maybe_pipeline: @maybe(@user_data, [ @parse_user_data, @validate_user_data, @process_user_data, @format_user_data ]) # Either monad composition either_pipeline: @either(@user_input, [ @parse_input, @validate_input, @process_input ], @handle_error) # Result monad composition result_pipeline: @result(@data_operation, [ @validate_result, @transform_result, @format_result ]) TSK

Ruby integration with monadic composition

class MonadicComposer def initialize(tusk_config) @config = tusk_config end def get_maybe_pipeline @config['monadic_composition']['maybe_pipeline'] end def get_either_pipeline @config['monadic_composition']['either_pipeline'] end def get_result_pipeline @config['monadic_composition']['result_pipeline'] end def process_maybe_pipeline(user_data) return nil if user_data.nil? result = user_data result = parse_user_data(result) if result result = validate_user_data(result) if result result = process_user_data(result) if result result = format_user_data(result) if result result end def process_either_pipeline(user_input) begin result = user_input result = parse_input(result) result = validate_input(result) result = process_input(result) { success: true, data: result } rescue => e { success: false, error: handle_error(e) } end end def process_result_pipeline(data_operation) result = data_operation return { success: false, error: result } if result.is_a?(Exception) result = validate_result(result) result = transform_result(result) result = format_result(result) { success: true, data: result } end private def parse_user_data(data) # Parse logic data end def validate_user_data(data) # Validation logic data end def process_user_data(data) # Processing logic data end def format_user_data(data) # Formatting logic data end def parse_input(input) # Parse logic input end def validate_input(input) # Validation logic input end def process_input(input) # Processing logic input end def handle_error(error) Rails.logger.error "Pipeline error: #{error.message}" error.message end def validate_result(result) # Result validation logic result end def transform_result(result) # Result transformation logic result end def format_result(result) # Result formatting logic result end end

🔄 Dynamic Function Composition

Runtime Function Composition

TuskLang with runtime composition

tsk_content = <<~TSK [runtime_composition] # Dynamic function selection dynamic_pipeline: @compose_dynamic(@user_data, @get_pipeline_config(@env("PIPELINE_TYPE"))) # Plugin-based composition plugin_pipeline: @compose_plugins(@user_data, @get_enabled_plugins()) # Configuration-driven composition config_pipeline: @compose_from_config(@user_data, @load_pipeline_config(@env("CONFIG_PATH"))) # A/B testing composition ab_test_pipeline: @ab_test_compose(@user_data, @get_experiment_config(@env("EXPERIMENT_ID"))) TSK

Ruby integration with runtime composition

class RuntimeComposer def initialize(tusk_config) @config = tusk_config end def get_dynamic_pipeline @config['runtime_composition']['dynamic_pipeline'] end def get_plugin_pipeline @config['runtime_composition']['plugin_pipeline'] end def get_config_pipeline @config['runtime_composition']['config_pipeline'] end def get_ab_test_pipeline @config['runtime_composition']['ab_test_pipeline'] end def process_dynamic_pipeline(user_data, pipeline_type) pipeline_config = get_pipeline_config(pipeline_type) compose_and_execute(user_data, pipeline_config) end def process_plugin_pipeline(user_data) enabled_plugins = get_enabled_plugins compose_and_execute(user_data, enabled_plugins) end def process_config_pipeline(user_data, config_path) pipeline_config = load_pipeline_config(config_path) compose_and_execute(user_data, pipeline_config) end def process_ab_test_pipeline(user_data, experiment_id) experiment_config = get_experiment_config(experiment_id) variant = select_variant(experiment_config) compose_and_execute(user_data, variant) end private def compose_and_execute(data, functions) functions.reduce(data) { |result, func| send(func, result) } end def get_pipeline_config(type) case type when 'simple' [:validate, :process, :format] when 'complex' [:validate, :sanitize, :process, :transform, :format] else [:validate, :process] end end def get_enabled_plugins # Get enabled plugins from configuration [:plugin_validate, :plugin_process, :plugin_log] end def load_pipeline_config(path) # Load pipeline configuration from file [:load_validate, :load_process, :load_format] end def get_experiment_config(experiment_id) # Get A/B test configuration { variant_a: [:validate_a, :process_a], variant_b: [:validate_b, :process_b] } end def select_variant(config) # Select A/B test variant rand < 0.5 ? config[:variant_a] : config[:variant_b] end end

🛡️ Error Handling and Validation

Function Composition Error Handling

TuskLang with error handling

tsk_content = <<~TSK [error_handling] # Error handling in composition safe_pipeline: @try_catch(@pipe(@user_data, [ @parse_data, @validate_data, @process_data ]), @handle_pipeline_error) # Retry logic in composition retry_pipeline: @retry(@pipe(@api_call, [ @validate_response, @process_response ]), 3, @exponential_backoff) # Circuit breaker pattern circuit_breaker_pipeline: @circuit_breaker(@pipe(@external_service, [ @call_service, @process_result ]), @handle_service_failure) TSK

Ruby integration with error handling

class ErrorHandlingComposer def initialize(tusk_config) @config = tusk_config end def get_safe_pipeline @config['error_handling']['safe_pipeline'] end def get_retry_pipeline @config['error_handling']['retry_pipeline'] end def get_circuit_breaker_pipeline @config['error_handling']['circuit_breaker_pipeline'] end def process_safe_pipeline(user_data) begin pipe(user_data, [:parse_data, :validate_data, :process_data]) rescue => e handle_pipeline_error(e) end end def process_retry_pipeline(api_call) retries = 0 max_retries = 3 begin pipe(api_call, [:validate_response, :process_response]) rescue => e retries += 1 if retries <= max_retries sleep(exponential_backoff(retries)) retry else raise e end end end def process_circuit_breaker_pipeline(external_service) if circuit_open? handle_service_failure("Circuit breaker is open") else begin result = pipe(external_service, [:call_service, :process_result]) reset_circuit result rescue => e record_failure handle_service_failure(e) end end end private def pipe(data, functions) functions.reduce(data) { |result, func| send(func, result) } end def parse_data(data) # Parse logic data end def validate_data(data) # Validation logic data end def process_data(data) # Processing logic data end def handle_pipeline_error(error) Rails.logger.error "Pipeline error: #{error.message}" { error: error.message, status: 'failed' } end def validate_response(response) # Response validation logic response end def process_response(response) # Response processing logic response end def exponential_backoff(retry_count) 2 ** retry_count end def call_service(service) # Service call logic service end def process_result(result) # Result processing logic result end def handle_service_failure(error) Rails.logger.error "Service failure: #{error}" { error: error.to_s, status: 'service_failed' } end def circuit_open? # Circuit breaker logic false end def record_failure # Record failure logic end def reset_circuit # Reset circuit logic end end

🚀 Performance Optimization

Efficient Function Composition

TuskLang with performance optimizations

tsk_content = <<~TSK [optimized_composition] # Cached function composition cached_pipeline: @cache("5m", @pipe(@user_data, [ @expensive_validation, @expensive_processing, @expensive_formatting ])) # Lazy evaluation in composition lazy_pipeline: @lazy(@pipe(@user_data, [ @expensive_operation, @another_expensive_operation ])) # Parallel function composition parallel_pipeline: @parallel_compose(@user_data, [ @independent_operation_1, @independent_operation_2, @independent_operation_3 ]) # Streaming composition stream_pipeline: @stream_compose(@large_dataset, [ @process_chunk, @validate_chunk, @format_chunk ]) TSK

Ruby integration with optimized composition

class OptimizedComposer def initialize(tusk_config) @config = tusk_config end def get_cached_pipeline @config['optimized_composition']['cached_pipeline'] end def get_lazy_pipeline @config['optimized_composition']['lazy_pipeline'] end def get_parallel_pipeline @config['optimized_composition']['parallel_pipeline'] end def get_stream_pipeline @config['optimized_composition']['stream_pipeline'] end def process_cached_pipeline(user_data) Rails.cache.fetch("pipeline_#{user_data.hash}", expires_in: 5.minutes) do pipe(user_data, [:expensive_validation, :expensive_processing, :expensive_formatting]) end end def process_lazy_pipeline(user_data) # Lazy evaluation using Ruby's Enumerator Enumerator.new do |yielder| result = user_data result = expensive_operation(result) yielder << result result = another_expensive_operation(result) yielder << result end end def process_parallel_pipeline(user_data) threads = [ Thread.new { independent_operation_1(user_data) }, Thread.new { independent_operation_2(user_data) }, Thread.new { independent_operation_3(user_data) } ] threads.map(&:value) end def process_stream_pipeline(large_dataset) large_dataset.each_slice(1000) do |chunk| result = pipe(chunk, [:process_chunk, :validate_chunk, :format_chunk]) yield result if block_given? end end private def pipe(data, functions) functions.reduce(data) { |result, func| send(func, result) } end def expensive_validation(data) # Expensive validation logic sleep(0.1) # Simulate expensive operation data end def expensive_processing(data) # Expensive processing logic sleep(0.1) # Simulate expensive operation data end def expensive_formatting(data) # Expensive formatting logic sleep(0.1) # Simulate expensive operation data end def expensive_operation(data) # Expensive operation logic data end def another_expensive_operation(data) # Another expensive operation logic data end def independent_operation_1(data) # Independent operation 1 data end def independent_operation_2(data) # Independent operation 2 data end def independent_operation_3(data) # Independent operation 3 data end def process_chunk(chunk) # Process chunk logic chunk end def validate_chunk(chunk) # Validate chunk logic chunk end def format_chunk(chunk) # Format chunk logic chunk end end

🎯 Best Practices

1. Use Descriptive Function Names

Good

user_processing_pipeline: @pipe(@user_data, [@validate_user_input, @process_user_data, @format_user_response]) data_transformation_chain: @compose(@parse_data, @validate_data, @transform_data)

Avoid

pipeline: @pipe(@data, [@func1, @func2, @func3]) chain: @compose(@f1, @f2, @f3)

2. Handle Errors Gracefully

TuskLang with error handling

tsk_content = <<~TSK [error_handling_best_practices] # Always wrap pipelines in error handling safe_pipeline: @try_catch(@pipe(@data, [@step1, @step2, @step3]), @handle_error) # Use appropriate error handling for different scenarios retry_pipeline: @retry(@pipe(@api_call, [@validate, @process]), 3, @backoff) TSK

3. Use Caching for Expensive Operations

Cache expensive function compositions

expensive_pipeline: @cache("10m", @pipe(@data, [@expensive_step1, @expensive_step2]))

4. Keep Functions Pure When Possible

TuskLang with pure functions

tsk_content = <<~TSK [pure_functions] # Pure function composition pure_pipeline: @pipe(@input_data, [ @pure_transform, @pure_validate, @pure_format ]) # Side effects isolated side_effect_pipeline: @pipe(@data, [ @pure_process, @side_effect_log, @pure_format ]) TSK

🔧 Troubleshooting

Common Function Composition Issues

Issue: Function composition errors

Solution: Add proper error handling

tsk_content = <<~TSK [error_fixes] # Add error handling to all pipelines safe_composition: @try_catch(@pipe(@data, [@step1, @step2]), @handle_error) # Use Maybe monad for nullable data maybe_composition: @maybe(@nullable_data, [@step1, @step2]) TSK

Issue: Performance problems with large datasets

Solution: Use streaming and parallel processing

tsk_content = <<~TSK [performance_fixes] # Use streaming for large datasets stream_composition: @stream_compose(@large_dataset, [@process, @validate]) # Use parallel processing for independent operations parallel_composition: @parallel_compose(@data, [@op1, @op2, @op3]) TSK

Issue: Complex function composition

Solution: Break into smaller, composable functions

tsk_content = <<~TSK [complexity_fixes] # Break complex pipelines into smaller parts simple_pipeline_1: @pipe(@data, [@step1, @step2]) simple_pipeline_2: @pipe(@simple_pipeline_1, [@step3, @step4]) # Use function factories for reusable patterns reusable_pipeline: @factory(@config, @create_pipeline) TSK

🎯 Summary

TuskLang's function composition provides powerful functional programming capabilities that integrate seamlessly with Ruby applications. By leveraging these operations, you can:

- Create complex transformation pipelines dynamically in configuration files - Build reusable function patterns with factories and currying - Handle errors gracefully with monadic composition - Optimize performance with caching and parallel processing - Implement functional programming patterns in your Ruby applications

The Ruby integration makes these operations even more powerful by combining TuskLang's declarative syntax with Ruby's rich functional programming features and libraries.

Remember: TuskLang function composition is designed to be expressive, performant, and Ruby-friendly. Use it to create dynamic, efficient, and maintainable functional programming configurations.

Key Takeaways: - Always handle errors in function compositions - Use caching for expensive operations - Keep functions pure when possible - Break complex pipelines into smaller, composable parts - Combine with Ruby's functional programming libraries for advanced functionality