💎 💾 Advanced Caching with TuskLang Ruby
💾 Advanced Caching with TuskLang Ruby
"We don't bow to any king" - Ruby Edition
Build sophisticated caching systems with TuskLang's advanced caching features. From multi-level caching to intelligent cache invalidation, TuskLang provides the flexibility and power you need to optimize performance in your Ruby applications.
🚀 Quick Start
Basic Caching Setup
require 'tusklang'
require 'tusklang/caching'Initialize caching system
cache_system = TuskLang::Caching::System.newConfigure caching
cache_system.configure do |config|
config.default_strategy = 'multi_level'
config.redis_enabled = true
config.memory_enabled = true
config.compression_enabled = true
endRegister caching strategies
cache_system.register_strategy(:multi_level, TuskLang::Caching::Strategies::MultiLevelStrategy.new)
cache_system.register_strategy(:write_through, TuskLang::Caching::Strategies::WriteThroughStrategy.new)
cache_system.register_strategy(:write_behind, TuskLang::Caching::Strategies::WriteBehindStrategy.new)
TuskLang Configuration
config/caching.tsk
[caching]
enabled: true
default_strategy: "multi_level"
redis_enabled: true
memory_enabled: true
compression_enabled: true[caching.strategies]
multi_level: {
enabled: true,
levels: ["memory", "redis", "database"],
ttl: {
memory: "5m",
redis: "1h",
database: "24h"
}
}
write_through: {
enabled: true,
write_to_cache: true,
write_to_database: true,
atomic_operations: true
}
write_behind: {
enabled: true,
batch_size: 100,
flush_interval: "30s",
max_queue_size: 1000
}
[caching.backends]
memory: {
enabled: true,
max_size: "100MB",
eviction_policy: "lru",
cleanup_interval: "5m"
}
redis: {
enabled: true,
host: @env("REDIS_HOST", "localhost"),
port: @env("REDIS_PORT", 6379),
db: @env("REDIS_DB", 0),
password: @env("REDIS_PASSWORD"),
pool_size: 10,
timeout: "5s"
}
memcached: {
enabled: false,
servers: ["localhost:11211"],
pool_size: 5
}
[caching.invalidation]
enabled: true
strategies: ["time_based", "event_based", "dependency_based"]
default_ttl: "1h"
max_ttl: "24h"
[caching.compression]
enabled: true
algorithm: "gzip"
min_size: "1KB"
compression_level: 6
[caching.monitoring]
enabled: true
metrics_enabled: true
hit_rate_threshold: 0.8
miss_rate_threshold: 0.2
🎯 Core Features
1. Multi-Level Caching Strategy
require 'tusklang/caching'class MultiLevelStrategy
include TuskLang::Caching::Strategy
def initialize
@config = TuskLang.parse_file('config/caching.tsk')
@levels = setup_cache_levels
@monitoring = CacheMonitoring.new
end
def get(key, context = {})
# Try each cache level
@levels.each_with_index do |level, index|
begin
value = level.get(key)
if value
@monitoring.record_hit(level.name, key)
return CacheResult.hit(value, level.name)
else
@monitoring.record_miss(level.name, key)
end
rescue => e
@monitoring.record_error(level.name, key, e)
next # Try next level
end
end
# All levels missed
CacheResult.miss(key)
end
def set(key, value, context = {})
ttl = context[:ttl] || @config['caching']['invalidation']['default_ttl']
# Set in all levels (write-through)
results = @levels.map do |level|
begin
level_ttl = get_level_ttl(level.name, ttl)
level.set(key, value, ttl: level_ttl)
@monitoring.record_set(level.name, key)
true
rescue => e
@monitoring.record_error(level.name, key, e)
false
end
end
CacheResult.set(key, results.any?)
end
def delete(key, context = {})
# Delete from all levels
results = @levels.map do |level|
begin
level.delete(key)
@monitoring.record_delete(level.name, key)
true
rescue => e
@monitoring.record_error(level.name, key, e)
false
end
end
CacheResult.delete(key, results.any?)
end
def invalidate(pattern, context = {})
# Invalidate matching keys from all levels
results = @levels.map do |level|
begin
level.invalidate(pattern)
@monitoring.record_invalidation(level.name, pattern)
true
rescue => e
@monitoring.record_error(level.name, pattern, e)
false
end
end
CacheResult.invalidate(pattern, results.any?)
end
private
def setup_cache_levels
levels_config = @config['caching']['strategies']['multi_level']['levels']
levels_config.map do |level_name|
case level_name
when 'memory'
MemoryCacheLevel.new(@config['caching']['backends']['memory'])
when 'redis'
RedisCacheLevel.new(@config['caching']['backends']['redis'])
when 'database'
DatabaseCacheLevel.new
else
raise "Unknown cache level: #{level_name}"
end
end
end
def get_level_ttl(level_name, base_ttl)
level_ttls = @config['caching']['strategies']['multi_level']['ttl']
level_ttls[level_name] || base_ttl
end
end
2. Write-Through Caching Strategy
require 'tusklang/caching'class WriteThroughStrategy
include TuskLang::Caching::Strategy
def initialize
@config = TuskLang.parse_file('config/caching.tsk')
@write_config = @config['caching']['strategies']['write_through']
@cache = setup_cache_backend
@database = DatabaseConnection.new
@monitoring = CacheMonitoring.new
end
def get(key, context = {})
# Try cache first
cached_value = @cache.get(key)
if cached_value
@monitoring.record_hit('write_through', key)
return CacheResult.hit(cached_value, 'cache')
end
# Cache miss, try database
begin
db_value = @database.get(key)
if db_value
# Write to cache for next time
@cache.set(key, db_value, ttl: context[:ttl])
@monitoring.record_miss('write_through', key)
return CacheResult.hit(db_value, 'database')
end
rescue => e
@monitoring.record_error('write_through', key, e)
end
CacheResult.miss(key)
end
def set(key, value, context = {})
if @write_config['atomic_operations']
# Use database transaction for atomicity
@database.transaction do
# Write to database first
@database.set(key, value)
# Then write to cache
@cache.set(key, value, ttl: context[:ttl])
end
else
# Write to both independently
@database.set(key, value)
@cache.set(key, value, ttl: context[:ttl])
end
@monitoring.record_set('write_through', key)
CacheResult.set(key, true)
end
def delete(key, context = {})
if @write_config['atomic_operations']
@database.transaction do
@database.delete(key)
@cache.delete(key)
end
else
@database.delete(key)
@cache.delete(key)
end
@monitoring.record_delete('write_through', key)
CacheResult.delete(key, true)
end
private
def setup_cache_backend
if @config['caching']['redis_enabled']
RedisCacheBackend.new(@config['caching']['backends']['redis'])
elsif @config['caching']['memory_enabled']
MemoryCacheBackend.new(@config['caching']['backends']['memory'])
else
raise "No cache backend configured"
end
end
end
3. Write-Behind Caching Strategy
require 'tusklang/caching'
require 'thread'class WriteBehindStrategy
include TuskLang::Caching::Strategy
def initialize
@config = TuskLang.parse_file('config/caching.tsk')
@write_config = @config['caching']['strategies']['write_behind']
@cache = setup_cache_backend
@database = DatabaseConnection.new
@write_queue = Queue.new
@monitoring = CacheMonitoring.new
# Start background writer thread
start_background_writer
end
def get(key, context = {})
# Always read from cache
cached_value = @cache.get(key)
if cached_value
@monitoring.record_hit('write_behind', key)
return CacheResult.hit(cached_value, 'cache')
end
# Cache miss, try database
begin
db_value = @database.get(key)
if db_value
@cache.set(key, db_value, ttl: context[:ttl])
@monitoring.record_miss('write_behind', key)
return CacheResult.hit(db_value, 'database')
end
rescue => e
@monitoring.record_error('write_behind', key, e)
end
CacheResult.miss(key)
end
def set(key, value, context = {})
# Write to cache immediately
@cache.set(key, value, ttl: context[:ttl])
# Queue for background database write
queue_write_operation(:set, key, value)
@monitoring.record_set('write_behind', key)
CacheResult.set(key, true)
end
def delete(key, context = {})
# Delete from cache immediately
@cache.delete(key)
# Queue for background database delete
queue_write_operation(:delete, key)
@monitoring.record_delete('write_behind', key)
CacheResult.delete(key, true)
end
def flush
# Force flush of all pending writes
until @write_queue.empty?
process_write_operation(@write_queue.pop)
end
end
private
def start_background_writer
@writer_thread = Thread.new do
loop do
begin
# Process batch of writes
batch = []
batch_size = @write_config['batch_size']
# Collect operations for batch processing
batch_size.times do
break if @write_queue.empty?
batch << @write_queue.pop
end
if batch.any?
process_write_batch(batch)
else
# No operations, sleep for flush interval
sleep(parse_duration(@write_config['flush_interval']))
end
rescue => e
@monitoring.record_error('write_behind', 'background_writer', e)
sleep(1) # Brief pause on error
end
end
end
end
def queue_write_operation(operation, key, value = nil)
# Check queue size limit
if @write_queue.size >= @write_config['max_queue_size']
@monitoring.record_queue_full('write_behind')
# Process some operations immediately to make room
process_write_operation(@write_queue.pop) if @write_queue.size > 0
end
@write_queue << { operation: operation, key: key, value: value, timestamp: Time.now }
end
def process_write_batch(batch)
@database.transaction do
batch.each do |operation|
process_write_operation(operation)
end
end
end
def process_write_operation(operation)
case operation[:operation]
when :set
@database.set(operation[:key], operation[:value])
when :delete
@database.delete(operation[:key])
end
@monitoring.record_background_write('write_behind', operation[:operation], operation[:key])
end
def setup_cache_backend
if @config['caching']['redis_enabled']
RedisCacheBackend.new(@config['caching']['backends']['redis'])
elsif @config['caching']['memory_enabled']
MemoryCacheBackend.new(@config['caching']['backends']['memory'])
else
raise "No cache backend configured"
end
end
def parse_duration(duration_str)
case duration_str
when /(\d+)s/
$1.to_i
when /(\d+)m/
$1.to_i * 60
when /(\d+)h/
$1.to_i * 3600
else
30 # Default 30 seconds
end
end
end
4. Cache Backend Implementations
require 'tusklang/caching'
require 'redis'
require 'zlib'class RedisCacheBackend
def initialize(config)
@redis = Redis.new(
host: config['host'],
port: config['port'],
db: config['db'],
password: config['password'],
timeout: parse_duration(config['timeout'])
)
@pool = ConnectionPool.new(size: config['pool_size']) { @redis }
@compression = CacheCompression.new
end
def get(key)
@pool.with do |redis|
data = redis.get(key)
return nil unless data
# Decompress if needed
@compression.decompress(data)
end
rescue => e
Rails.logger.error "Redis get error: #{e.message}"
nil
end
def set(key, value, ttl: nil)
@pool.with do |redis|
# Compress if needed
data = @compression.compress(value)
if ttl
redis.setex(key, parse_duration(ttl), data)
else
redis.set(key, data)
end
end
rescue => e
Rails.logger.error "Redis set error: #{e.message}"
false
end
def delete(key)
@pool.with do |redis|
redis.del(key)
end
rescue => e
Rails.logger.error "Redis delete error: #{e.message}"
false
end
def invalidate(pattern)
@pool.with do |redis|
keys = redis.keys(pattern)
redis.del(*keys) if keys.any?
end
rescue => e
Rails.logger.error "Redis invalidate error: #{e.message}"
false
end
private
def parse_duration(duration_str)
case duration_str
when /(\d+)s/
$1.to_i
when /(\d+)m/
$1.to_i * 60
when /(\d+)h/
$1.to_i * 3600
else
3600 # Default 1 hour
end
end
end
class MemoryCacheBackend
def initialize(config)
@cache = {}
@max_size = parse_size(config['max_size'])
@eviction_policy = config['eviction_policy']
@cleanup_interval = parse_duration(config['cleanup_interval'])
@access_times = {}
@mutex = Mutex.new
# Start cleanup thread
start_cleanup_thread
end
def get(key)
@mutex.synchronize do
value = @cache[key]
if value
@access_times[key] = Time.now
value
else
nil
end
end
end
def set(key, value, ttl: nil)
@mutex.synchronize do
# Check size limit
if @cache.size >= @max_size
evict_entries
end
@cache[key] = {
value: value,
ttl: ttl ? Time.now + parse_duration(ttl) : nil,
created_at: Time.now
}
@access_times[key] = Time.now
end
end
def delete(key)
@mutex.synchronize do
@cache.delete(key)
@access_times.delete(key)
end
end
def invalidate(pattern)
@mutex.synchronize do
keys_to_delete = @cache.keys.select { |key| key.match?(pattern) }
keys_to_delete.each do |key|
@cache.delete(key)
@access_times.delete(key)
end
end
end
private
def evict_entries
case @eviction_policy
when 'lru'
# Remove least recently used
oldest_key = @access_times.min_by { |_, time| time }&.first
@cache.delete(oldest_key)
@access_times.delete(oldest_key)
when 'lfu'
# Remove least frequently used
# Implementation would track access frequency
when 'random'
# Remove random entry
random_key = @cache.keys.sample
@cache.delete(random_key)
@access_times.delete(random_key)
end
end
def start_cleanup_thread
Thread.new do
loop do
sleep(@cleanup_interval)
cleanup_expired_entries
end
end
end
def cleanup_expired_entries
@mutex.synchronize do
current_time = Time.now
expired_keys = @cache.select do |key, entry|
entry[:ttl] && entry[:ttl] < current_time
end.keys
expired_keys.each do |key|
@cache.delete(key)
@access_times.delete(key)
end
end
end
def parse_size(size_str)
case size_str
when /(\d+)MB/
$1.to_i 1024 1024
when /(\d+)KB/
$1.to_i * 1024
when /(\d+)B/
$1.to_i
else
100 1024 1024 # Default 100MB
end
end
def parse_duration(duration_str)
case duration_str
when /(\d+)s/
$1.to_i
when /(\d+)m/
$1.to_i * 60
when /(\d+)h/
$1.to_i * 3600
else
3600 # Default 1 hour
end
end
end
🔧 Advanced Configuration
Cache Compression
require 'tusklang/caching'class CacheCompression
def initialize
@config = TuskLang.parse_file('config/caching.tsk')
@compression_config = @config['caching']['compression']
@min_size = parse_size(@compression_config['min_size'])
end
def compress(data)
return data unless should_compress?(data)
case @compression_config['algorithm']
when 'gzip'
compress_gzip(data)
when 'lz4'
compress_lz4(data)
else
data
end
end
def decompress(data)
# Detect compression and decompress
if data.start_with?('gzip:')
decompress_gzip(data[5..-1])
elsif data.start_with?('lz4:')
decompress_lz4(data[4..-1])
else
data
end
end
private
def should_compress?(data)
data.bytesize >= @min_size
end
def compress_gzip(data)
compressed = Zlib::Deflate.deflate(data, @compression_config['compression_level'])
"gzip:#{compressed}"
end
def decompress_gzip(data)
Zlib::Inflate.inflate(data)
end
def compress_lz4(data)
# LZ4 compression implementation
# This would use the lz4-ruby gem
"lz4:#{data}"
end
def decompress_lz4(data)
# LZ4 decompression implementation
data
end
def parse_size(size_str)
case size_str
when /(\d+)KB/
$1.to_i * 1024
when /(\d+)MB/
$1.to_i 1024 1024
else
1024 # Default 1KB
end
end
end
Cache Invalidation Strategies
require 'tusklang/caching'class CacheInvalidation
def initialize
@config = TuskLang.parse_file('config/caching.tsk')
@invalidation_config = @config['caching']['invalidation']
@strategies = setup_invalidation_strategies
end
def invalidate(key, strategy = nil)
strategy ||= @invalidation_config['strategies'].first
case strategy
when 'time_based'
time_based_invalidation(key)
when 'event_based'
event_based_invalidation(key)
when 'dependency_based'
dependency_based_invalidation(key)
else
raise "Unknown invalidation strategy: #{strategy}"
end
end
def time_based_invalidation(key)
# Set TTL for automatic expiration
ttl = @invalidation_config['default_ttl']
@cache.set(key, @cache.get(key), ttl: ttl)
end
def event_based_invalidation(key)
# Subscribe to events that should invalidate this key
EventBus.subscribe("cache_invalidate:#{key}") do |event|
@cache.delete(key)
end
end
def dependency_based_invalidation(key)
# Track dependencies and invalidate when dependencies change
dependencies = get_key_dependencies(key)
dependencies.each do |dependency|
EventBus.subscribe("dependency_changed:#{dependency}") do |event|
@cache.delete(key)
end
end
end
private
def setup_invalidation_strategies
@invalidation_config['strategies'].map do |strategy|
case strategy
when 'time_based'
TimeBasedInvalidation.new
when 'event_based'
EventBasedInvalidation.new
when 'dependency_based'
DependencyBasedInvalidation.new
end
end
end
def get_key_dependencies(key)
# Analyze key to determine dependencies
# This could be based on key patterns, data analysis, etc.
[]
end
end
📊 Performance Optimization
Cache Warming and Preloading
require 'tusklang/caching'class CacheWarming
def initialize
@config = TuskLang.parse_file('config/caching.tsk')
@cache = TuskLang::Caching::System.new
@monitoring = CacheMonitoring.new
end
def warm_cache(patterns = [])
patterns.each do |pattern|
warm_pattern(pattern)
end
end
def warm_pattern(pattern)
case pattern
when 'users:popular'
warm_popular_users
when 'products:featured'
warm_featured_products
when 'content:homepage'
warm_homepage_content
else
warm_custom_pattern(pattern)
end
end
def warm_popular_users
# Preload popular users into cache
popular_users = User.popular.limit(100)
popular_users.each do |user|
key = "user:#{user.id}"
@cache.set(key, user.to_json, ttl: '1h')
end
@monitoring.record_cache_warming('users:popular', popular_users.count)
end
def warm_featured_products
# Preload featured products
featured_products = Product.featured.includes(:category, :images)
featured_products.each do |product|
key = "product:#{product.id}"
@cache.set(key, product.to_json, ttl: '2h')
end
@monitoring.record_cache_warming('products:featured', featured_products.count)
end
def warm_homepage_content
# Preload homepage content
content = {
featured_products: Product.featured.limit(10),
categories: Category.active,
banners: Banner.active,
stats: get_homepage_stats
}
@cache.set('content:homepage', content.to_json, ttl: '30m')
@monitoring.record_cache_warming('content:homepage', 1)
end
def warm_custom_pattern(pattern)
# Custom pattern warming logic
# This could be based on configuration or dynamic analysis
end
private
def get_homepage_stats
{
total_users: User.count,
total_products: Product.count,
total_orders: Order.count
}
end
end
Cache Analytics and Monitoring
require 'tusklang/caching'class CacheAnalytics
def initialize
@metrics = TuskLang::Metrics::System.new
@cache = TuskLang::Caching::System.new
end
def get_cache_performance(time_range = '24h')
{
hit_rate: calculate_hit_rate(time_range),
miss_rate: calculate_miss_rate(time_range),
average_response_time: calculate_average_response_time(time_range),
cache_size: get_cache_size,
eviction_rate: calculate_eviction_rate(time_range)
}
end
def get_cache_usage_by_pattern(time_range = '24h')
# Analyze cache usage by key patterns
patterns = ['user:', 'product:', 'order:', 'category:']
patterns.map do |pattern|
{
pattern: pattern,
hit_count: get_pattern_hit_count(pattern, time_range),
miss_count: get_pattern_miss_count(pattern, time_range),
hit_rate: calculate_pattern_hit_rate(pattern, time_range)
}
end
end
def get_cache_recommendations
recommendations = []
# Analyze hit rates
hit_rate = calculate_hit_rate('24h')
if hit_rate < 0.8
recommendations << {
type: 'low_hit_rate',
message: "Cache hit rate is #{hit_rate * 100}%. Consider adjusting TTL or warming strategies.",
priority: 'high'
}
end
# Analyze memory usage
memory_usage = get_memory_usage
if memory_usage > 0.9
recommendations << {
type: 'high_memory_usage',
message: "Cache memory usage is #{memory_usage * 100}%. Consider increasing memory or optimizing keys.",
priority: 'medium'
}
end
# Analyze eviction rate
eviction_rate = calculate_eviction_rate('24h')
if eviction_rate > 0.1
recommendations << {
type: 'high_eviction_rate',
message: "High eviction rate detected. Consider increasing cache size or optimizing eviction policy.",
priority: 'medium'
}
end
recommendations
end
private
def calculate_hit_rate(time_range)
hits = @metrics.get_counter_value("cache_hits_total", time_range)
misses = @metrics.get_counter_value("cache_misses_total", time_range)
total = hits + misses
total > 0 ? hits.to_f / total : 0
end
def calculate_miss_rate(time_range)
1 - calculate_hit_rate(time_range)
end
def calculate_average_response_time(time_range)
# Calculate average cache response time
@metrics.get_histogram_value("cache_response_time_seconds", time_range)
end
def get_cache_size
# Get current cache size
@cache.get_stats[:size] || 0
end
def calculate_eviction_rate(time_range)
evictions = @metrics.get_counter_value("cache_evictions_total", time_range)
total_operations = @metrics.get_counter_value("cache_operations_total", time_range)
total_operations > 0 ? evictions.to_f / total_operations : 0
end
def get_memory_usage
# Get memory usage percentage
@cache.get_stats[:memory_usage] || 0
end
end
🔍 Monitoring and Analytics
Cache Health Dashboard
require 'tusklang/caching'class CacheHealthDashboard
def initialize
@analytics = CacheAnalytics.new
@monitoring = CacheMonitoring.new
end
def get_health_status
{
overall_status: calculate_overall_status,
performance_metrics: get_performance_metrics,
usage_patterns: get_usage_patterns,
recommendations: get_recommendations,
alerts: get_active_alerts
}
end
def get_performance_metrics
{
hit_rate: @analytics.calculate_hit_rate('1h'),
response_time: @analytics.calculate_average_response_time('1h'),
throughput: calculate_throughput('1h'),
error_rate: calculate_error_rate('1h')
}
end
def get_usage_patterns
{
top_keys: get_top_accessed_keys('1h'),
key_patterns: get_key_pattern_usage('1h'),
memory_distribution: get_memory_distribution,
eviction_patterns: get_eviction_patterns('1h')
}
end
def get_recommendations
@analytics.get_cache_recommendations
end
def get_active_alerts
# Get active cache-related alerts
[
{
id: 'cache_hit_rate_low',
severity: 'warning',
message: 'Cache hit rate below threshold',
timestamp: Time.now.iso8601
}
]
end
private
def calculate_overall_status
hit_rate = @analytics.calculate_hit_rate('1h')
error_rate = calculate_error_rate('1h')
if error_rate > 0.05
'critical'
elsif hit_rate < 0.7
'warning'
else
'healthy'
end
end
def calculate_throughput(time_range)
# Calculate operations per second
operations = @metrics.get_counter_value("cache_operations_total", time_range)
duration = parse_duration(time_range)
operations.to_f / duration
end
def calculate_error_rate(time_range)
errors = @metrics.get_counter_value("cache_errors_total", time_range)
total = @metrics.get_counter_value("cache_operations_total", time_range)
total > 0 ? errors.to_f / total : 0
end
def get_top_accessed_keys(time_range)
# Get most frequently accessed cache keys
[
{ key: 'user:123', access_count: 150, hit_rate: 0.95 },
{ key: 'product:456', access_count: 120, hit_rate: 0.88 },
{ key: 'category:789', access_count: 89, hit_rate: 0.92 }
]
end
def get_key_pattern_usage(time_range)
# Get usage by key patterns
[
{ pattern: 'user:*', count: 500, hit_rate: 0.85 },
{ pattern: 'product:*', count: 300, hit_rate: 0.78 },
{ pattern: 'order:*', count: 200, hit_rate: 0.92 }
]
end
def get_memory_distribution
# Get memory usage distribution
{
user_data: 0.4,
product_data: 0.3,
order_data: 0.2,
other: 0.1
}
end
def get_eviction_patterns(time_range)
# Get eviction patterns
[
{ reason: 'ttl_expired', count: 150 },
{ reason: 'memory_pressure', count: 25 },
{ reason: 'manual_invalidation', count: 10 }
]
end
def parse_duration(duration_str)
case duration_str
when /(\d+)h/
$1.to_i * 3600
when /(\d+)m/
$1.to_i * 60
when /(\d+)s/
$1.to_i
else
3600 # Default 1 hour
end
end
end
🎯 Best Practices
1. Cache Key Design
- Consistent Naming: Use consistent, predictable key patterns - Namespace Separation: Separate different data types with namespaces - Versioning: Include version numbers for cache invalidation - Granularity: Balance between cache efficiency and memory usage2. TTL Strategy
- Short TTL for Dynamic Data: Use short TTL for frequently changing data - Long TTL for Static Data: Use longer TTL for rarely changing data - Progressive TTL: Use different TTL levels for different cache tiers - Adaptive TTL: Adjust TTL based on access patterns3. Cache Invalidation
- Time-Based: Use TTL for automatic expiration - Event-Based: Invalidate on specific events or data changes - Dependency-Based: Track and invalidate dependent cache entries - Pattern-Based: Use wildcards for bulk invalidation4. Performance Optimization
- Compression: Compress large cache entries - Serialization: Use efficient serialization formats - Connection Pooling: Pool connections to cache backends - Batch Operations: Use batch operations for multiple keys5. Monitoring and Alerting
- Hit Rate Monitoring: Track cache hit rates and alert on low performance - Memory Usage: Monitor memory usage and eviction rates - Response Times: Track cache response times - Error Rates: Monitor cache errors and failures🚀 Conclusion
TuskLang's advanced caching provides comprehensive tools for optimizing Ruby application performance. From multi-level caching to intelligent invalidation strategies, TuskLang enables developers to build high-performance applications with sophisticated caching capabilities.
The combination of multiple caching strategies, compression, monitoring, and analytics ensures that your Ruby applications can deliver optimal performance while maintaining data consistency and reliability.