🦀 🦀 TuskLang Rust Performance Optimization

Rust Documentation

🦀 TuskLang Rust Performance Optimization

"We don't bow to any king" - Rust Edition

Master performance optimization for TuskLang Rust applications. From zero-copy parsing to intelligent caching, from parallel processing to memory optimization - learn how to build applications that scale with maximum efficiency and minimal resource usage.

⚡ Zero-Copy Parsing Optimization

Basic Zero-Copy Implementation

use tusklang_rust::{parse, Parser};
use std::borrow::Cow;

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); // Enable zero-copy mode parser.set_zero_copy(true); let tsk_content = r#" [application] name: "HighPerformanceApp" version: "1.0.0" debug: false

[database] host: "localhost" port: 5432 name: "perfdb" user: "postgres" password: "secret"

[server] host: "0.0.0.0" port: 8080 workers: 8 threads_per_worker: 4 "#; // Zero-copy parsing - no memory allocation for strings let data = parser.parse(tsk_content)?; // Access data without cloning let app_name = data["application"]["name"].as_str().unwrap(); let db_host = data["database"]["host"].as_str().unwrap(); let server_port = data["server"]["port"].as_u64().unwrap(); println!("App: {} on {}:{}", app_name, db_host, server_port); Ok(()) }

Advanced Zero-Copy with String Interning

use tusklang_rust::{parse, Parser};
use std::collections::HashMap;
use std::sync::Arc;
use parking_lot::RwLock;

struct StringInterner { strings: Arc<RwLock<HashMap<String, u32>>>, reverse: Arc<RwLock<HashMap<u32, String>>>, next_id: Arc<RwLock<u32>>, }

impl StringInterner { fn new() -> Self { Self { strings: Arc::new(RwLock::new(HashMap::new())), reverse: Arc::new(RwLock::new(HashMap::new())), next_id: Arc::new(RwLock::new(0)), } } fn intern(&self, s: &str) -> u32 { let mut strings = self.strings.write(); if let Some(&id) = strings.get(s) { return id; } let id = { let mut next_id = self.next_id.write(); let id = *next_id; *next_id += 1; id }; strings.insert(s.to_string(), id); self.reverse.write().insert(id, s.to_string()); id } fn get(&self, id: u32) -> Option<String> { self.reverse.read().get(&id).cloned() } }

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); let interner = StringInterner::new(); // Enable string interning parser.set_string_interner(Arc::new(interner)); let tsk_content = r#" [performance] cache_enabled: true cache_size: 10000 cache_ttl: "5m" parallel_processing: true worker_threads: 8 memory_limit: "2GB" "#; let data = parser.parse(tsk_content)?; // Strings are now interned - minimal memory usage let cache_enabled = data["performance"]["cache_enabled"].as_bool().unwrap(); let cache_size = data["performance"]["cache_size"].as_u64().unwrap(); println!("Cache enabled: {}, Size: {}", cache_enabled, cache_size); Ok(()) }

🧠 Memory Optimization

Memory Pool Implementation

use tusklang_rust::{parse, Parser};
use std::alloc::{alloc, dealloc, Layout};
use std::sync::Arc;
use parking_lot::Mutex;

struct MemoryPool { pools: Arc<Mutex<HashMap<usize, Vec<*mut u8>>>>, }

impl MemoryPool { fn new() -> Self { Self { pools: Arc::new(Mutex::new(HashMap::new())), } } fn allocate(&self, size: usize) -> *mut u8 { let mut pools = self.pools.lock(); // Try to reuse existing allocation if let Some(pool) = pools.get_mut(&size) { if let Some(ptr) = pool.pop() { return ptr; } } // Allocate new memory let layout = Layout::from_size_align(size, 8).unwrap(); unsafe { alloc(layout) } } fn deallocate(&self, ptr: *mut u8, size: usize) { let mut pools = self.pools.lock(); // Return to pool instead of deallocating pools.entry(size).or_insert_with(Vec::new).push(ptr); } }

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); let memory_pool = MemoryPool::new(); // Enable memory pooling parser.set_memory_pool(Arc::new(memory_pool)); let tsk_content = r#" [memory_optimization] use_pool: true pool_size: 1000 max_allocation_size: 1048576 garbage_collection_interval: "30s" "#; let data = parser.parse(tsk_content)?; let use_pool = data["memory_optimization"]["use_pool"].as_bool().unwrap(); let pool_size = data["memory_optimization"]["pool_size"].as_u64().unwrap(); println!("Memory pool enabled: {}, Size: {}", use_pool, pool_size); Ok(()) }

Garbage Collection Optimization

use tusklang_rust::{parse, Parser};
use std::sync::Arc;
use std::time::{Duration, Instant};
use parking_lot::RwLock;

struct GarbageCollector { last_gc: Arc<RwLock<Instant>>, gc_interval: Duration, allocations: Arc<RwLock<Vec<*mut u8>>>, }

impl GarbageCollector { fn new(gc_interval: Duration) -> Self { Self { last_gc: Arc::new(RwLock::new(Instant::now())), gc_interval, allocations: Arc::new(RwLock::new(Vec::new())), } } fn should_gc(&self) -> bool { let last_gc = *self.last_gc.read(); Instant::now().duration_since(last_gc) >= self.gc_interval } fn collect(&self) { let mut last_gc = self.last_gc.write(); *last_gc = Instant::now(); let mut allocations = self.allocations.write(); allocations.clear(); } fn track_allocation(&self, ptr: *mut u8) { self.allocations.write().push(ptr); } }

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); let gc = GarbageCollector::new(Duration::from_secs(30)); // Enable garbage collection parser.set_garbage_collector(Arc::new(gc)); let tsk_content = r#" [gc_settings] enabled: true interval: "30s" max_memory_usage: "1GB" aggressive_mode: false "#; let data = parser.parse(tsk_content)?; let gc_enabled = data["gc_settings"]["enabled"].as_bool().unwrap(); let gc_interval = data["gc_settings"]["interval"].as_str().unwrap(); println!("GC enabled: {}, Interval: {}", gc_enabled, gc_interval); Ok(()) }

🔄 Parallel Processing

Parallel Parser Implementation

use tusklang_rust::{parse, Parser};
use rayon::prelude::*;
use std::sync::Arc;

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); // Enable parallel processing parser.set_parallel_processing(true); parser.set_worker_threads(8); let configs = vec![ r#" [app1] name: "App1" port: 8081 "#, r#" [app2] name: "App2" port: 8082 "#, r#" [app3] name: "App3" port: 8083 "#, ]; // Parse multiple configs in parallel let results: Vec<_> = configs.par_iter() .map(|config| parser.parse(config)) .collect(); for (i, result) in results.into_iter().enumerate() { let data = result?; println!("App{}: {} on port {}", i + 1, data[&format!("app{}", i + 1)]["name"], data[&format!("app{}", i + 1)]["port"] ); } Ok(()) }

Parallel FUJSEN Execution

use tusklang_rust::{parse, Parser};
use rayon::prelude::*;
use std::sync::Arc;

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); let tsk_content = r#" [parallel_math] add_fujsen = ''' fn add(a: i32, b: i32) -> i32 { a + b } '''

[parallel_processing] process_data_fujsen = ''' fn process_data(data: Vec<i32>) -> i32 { data.iter().sum() } ''' "#; parser.parse(tsk_content)?; // Prepare data for parallel processing let data_sets: Vec<Vec<i32>> = (0..1000) .map(|i| (i..i+100).collect()) .collect(); // Execute FUJSEN functions in parallel let results: Vec<_> = data_sets.par_iter() .map(|data| { tokio::runtime::Handle::current().block_on(async { parser.execute_fujsen("parallel_processing", "process_data", &[data]).await }) }) .collect(); let total_sum: i32 = results.into_iter() .filter_map(|r| r.ok()) .sum(); println!("Total sum from parallel processing: {}", total_sum); Ok(()) }

💾 Intelligent Caching

Multi-Level Cache Implementation

use tusklang_rust::{parse, Parser, cache::{MemoryCache, RedisCache, TieredCache}};
use std::time::Duration;

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); // Setup multi-level caching let memory_cache = MemoryCache::new(); let redis_cache = RedisCache::new(RedisConfig { host: "localhost".to_string(), port: 6379, db: 0, }).await?; let tiered_cache = TieredCache::new() .add_tier(memory_cache, "5s") // L1: Memory cache, 5 seconds .add_tier(redis_cache, "1h"); // L2: Redis cache, 1 hour parser.set_cache(tiered_cache); let tsk_content = r#" [cached_operations] user_profile: @cache("1h", "user_profile", @request.user_id) expensive_calculation: @cache("5m", "expensive_operation") api_response: @cache("30s", "api_call", @request.endpoint) database_query: @cache("10m", "db_query", @request.query_hash) "#; let data = parser.parse(tsk_content).await?; println!("Cached operations configured:"); println!(" User profile: {}", data["cached_operations"]["user_profile"]); println!(" Expensive calculation: {}", data["cached_operations"]["expensive_calculation"]); println!(" API response: {}", data["cached_operations"]["api_response"]); println!(" Database query: {}", data["cached_operations"]["database_query"]); Ok(()) }

Adaptive Cache Implementation

use tusklang_rust::{parse, Parser, cache::{AdaptiveCache, CacheStrategy}};
use std::collections::HashMap;

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); let adaptive_cache = AdaptiveCache::new() .with_strategy(CacheStrategy::LRU) .with_max_size(1000) .with_ttl_adaptation(true) .with_access_tracking(true); parser.set_cache(adaptive_cache); let tsk_content = r#" [adaptive_caching] frequently_accessed: @cache.adaptive("frequent_data", @request.key) rarely_accessed: @cache.adaptive("rare_data", @request.key) hot_data: @cache.adaptive("hot_data", @request.key, "1h") cold_data: @cache.adaptive("cold_data", @request.key, "24h") "#; let data = parser.parse(tsk_content).await?; println!("Adaptive cache configured:"); println!(" Frequently accessed: {}", data["adaptive_caching"]["frequently_accessed"]); println!(" Rarely accessed: {}", data["adaptive_caching"]["rarely_accessed"]); println!(" Hot data: {}", data["adaptive_caching"]["hot_data"]); println!(" Cold data: {}", data["adaptive_caching"]["cold_data"]); Ok(()) }

🔧 Database Optimization

Connection Pooling

use tusklang_rust::{parse, Parser, adapters::postgresql::{PostgreSQLAdapter, PostgreSQLConfig, PoolConfig}};
use std::time::Duration;

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); // Setup optimized database connection pool let postgres = PostgreSQLAdapter::with_pool(PostgreSQLConfig { host: "localhost".to_string(), port: 5432, database: "perfdb".to_string(), user: "postgres".to_string(), password: "secret".to_string(), ssl_mode: "disable".to_string(), }, PoolConfig { max_open_conns: 50, max_idle_conns: 20, conn_max_lifetime: Duration::from_secs(300), conn_max_idle_time: Duration::from_secs(60), }).await?; parser.set_database_adapter(postgres); let tsk_content = r#" [database_optimization] connection_pool_size: 50 max_idle_connections: 20 connection_lifetime: "5m" idle_timeout: "1m" query_timeout: "30s" statement_cache_size: 1000 "#; let data = parser.parse(tsk_content).await?; println!("Database optimization configured:"); println!(" Pool size: {}", data["database_optimization"]["connection_pool_size"]); println!(" Max idle: {}", data["database_optimization"]["max_idle_connections"]); println!(" Lifetime: {}", data["database_optimization"]["connection_lifetime"]); println!(" Idle timeout: {}", data["database_optimization"]["idle_timeout"]); Ok(()) }

Query Optimization

use tusklang_rust::{parse, Parser, adapters::sqlite::SQLiteAdapter};

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); let db = SQLiteAdapter::new(":memory:").await?; // Setup optimized database db.execute(r#" PRAGMA journal_mode=WAL; PRAGMA synchronous=NORMAL; PRAGMA cache_size=10000; PRAGMA temp_store=MEMORY; PRAGMA mmap_size=268435456; CREATE TABLE users ( id INTEGER PRIMARY KEY, name TEXT NOT NULL, email TEXT UNIQUE, active BOOLEAN DEFAULT 1, created_at DATETIME DEFAULT CURRENT_TIMESTAMP ); CREATE INDEX idx_users_active ON users(active); CREATE INDEX idx_users_email ON users(email); CREATE INDEX idx_users_created_at ON users(created_at); INSERT INTO users (name, email) VALUES ('Alice', 'alice@example.com'), ('Bob', 'bob@example.com'), ('Charlie', 'charlie@example.com'); "#).await?; parser.set_database_adapter(db); let tsk_content = r#" [query_optimization] optimized_queries: true use_indexes: true prepared_statements: true query_cache_size: 1000 slow_query_threshold: "100ms" "#; let data = parser.parse(tsk_content).await?; // Test optimized queries let users = parser.query("SELECT * FROM users WHERE active = 1").await?; println!("Active users: {}", users.len()); let user_by_email = parser.query("SELECT * FROM users WHERE email = ?", &["alice@example.com"]).await?; println!("User by email: {:?}", user_by_email); Ok(()) }

📊 Performance Monitoring

Real-Time Metrics

use tusklang_rust::{parse, Parser, metrics::{MetricsCollector, PrometheusExporter}};
use std::sync::Arc;
use std::time::Instant;

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); let metrics_collector = MetricsCollector::new(); let prometheus_exporter = PrometheusExporter::new("0.0.0.0:9090").await?; parser.set_metrics_collector(metrics_collector); parser.set_metrics_exporter(prometheus_exporter); let tsk_content = r#" [performance_monitoring] enabled: true metrics_port: 9090 collection_interval: "5s" memory_tracking: true cpu_tracking: true query_tracking: true cache_tracking: true "#; let data = parser.parse(tsk_content).await?; // Start performance monitoring let start = Instant::now(); // Simulate some operations for i in 0..1000 { let _result = parser.parse(&format!(r#" [test] value: {} string: "test_string_{}" "#, i, i)).await?; } let duration = start.elapsed(); println!("Processed 1000 configs in {:?}", duration); println!("Average time per config: {:?}", duration / 1000); Ok(()) }

Performance Benchmarking

use tusklang_rust::{parse, Parser};
use std::time::{Duration, Instant};
use std::collections::HashMap;

struct PerformanceBenchmark { results: HashMap<String, Vec<Duration>>, }

impl PerformanceBenchmark { fn new() -> Self { Self { results: HashMap::new(), } } fn benchmark<F>(&mut self, name: &str, iterations: usize, mut test_fn: F) where F: FnMut() -> Result<(), Box<dyn std::error::Error>>, { let mut times = Vec::new(); for _ in 0..iterations { let start = Instant::now(); test_fn().expect("Benchmark test failed"); times.push(start.elapsed()); } self.results.insert(name.to_string(), times); } fn print_results(&self) { println!("Performance Benchmark Results:"); println!("{:<20} {:<10} {:<15} {:<15} {:<15} {:<15}", "Test", "Iterations", "Total Time", "Avg Time", "Min Time", "Max Time"); println!("{}", "-".repeat(90)); for (name, times) in &self.results { let total_time: Duration = times.iter().sum(); let avg_time = total_time / times.len() as u32; let min_time = times.iter().min().unwrap().clone(); let max_time = times.iter().max().unwrap().clone(); println!("{:<20} {:<10} {:<15?} {:<15?} {:<15?} {:<15?}", name, times.len(), total_time, avg_time, min_time, max_time ); } } }

#[tokio::main] async fn test_performance_benchmarks() -> Result<(), Box<dyn std::error::Error>> { let mut benchmark = PerformanceBenchmark::new(); let mut parser = Parser::new(); let tsk_content = r#" [test] value: 42 string: "hello" boolean: true array: [1, 2, 3, 4, 5] object: { key: "value" nested: { deep: "data" } } "#; // Benchmark parsing benchmark.benchmark("TSK Parsing", 1000, || { parser.parse(tsk_content)?; Ok(()) }); // Benchmark FUJSEN execution let fujsen_tsk = r#" [math] add_fujsen = ''' fn add(a: i32, b: i32) -> i32 { a + b } ''' "#; parser.parse(fujsen_tsk).expect("Failed to parse FUJSEN"); benchmark.benchmark("FUJSEN Execution", 1000, || { parser.execute_fujsen("math", "add", &[&5, &3]).await?; Ok(()) }); // Benchmark database queries let db = SQLiteAdapter::new(":memory:").await?; db.execute("CREATE TABLE test (id INTEGER, value TEXT)").await?; parser.set_database_adapter(db); benchmark.benchmark("Database Query", 100, || { parser.query("SELECT * FROM test").await?; Ok(()) }); // Print results benchmark.print_results(); Ok(()) }

🚀 Optimization Strategies

Compile-Time Optimization

use tusklang_rust::{parse, Parser};

// Compile-time configuration for maximum performance #[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); // Enable all optimizations parser.set_optimizations(ParserOptimizations { zero_copy: true, string_interning: true, memory_pooling: true, parallel_processing: true, aggressive_caching: true, compile_time_validation: true, }); let tsk_content = r#" [optimization_settings] zero_copy_enabled: true string_interning_enabled: true memory_pooling_enabled: true parallel_processing_enabled: true aggressive_caching_enabled: true compile_time_validation_enabled: true "#; let data = parser.parse(tsk_content).await?; println!("Optimization settings:"); println!(" Zero-copy: {}", data["optimization_settings"]["zero_copy_enabled"]); println!(" String interning: {}", data["optimization_settings"]["string_interning_enabled"]); println!(" Memory pooling: {}", data["optimization_settings"]["memory_pooling_enabled"]); println!(" Parallel processing: {}", data["optimization_settings"]["parallel_processing_enabled"]); println!(" Aggressive caching: {}", data["optimization_settings"]["aggressive_caching_enabled"]); println!(" Compile-time validation: {}", data["optimization_settings"]["compile_time_validation_enabled"]); Ok(()) }

Runtime Optimization

use tusklang_rust::{parse, Parser};
use std::sync::Arc;
use tokio::sync::Semaphore;

#[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { let mut parser = Parser::new(); // Runtime optimizations let semaphore = Arc::new(Semaphore::new(100)); // Limit concurrent operations parser.set_concurrency_limit(100); parser.set_memory_limit(1024 1024 1024); // 1GB memory limit let tsk_content = r#" [runtime_optimization] concurrency_limit: 100 memory_limit: "1GB" cpu_limit: "4" io_timeout: "30s" max_retries: 3 backoff_strategy: "exponential" "#; let data = parser.parse(tsk_content).await?; println!("Runtime optimization configured:"); println!(" Concurrency limit: {}", data["runtime_optimization"]["concurrency_limit"]); println!(" Memory limit: {}", data["runtime_optimization"]["memory_limit"]); println!(" CPU limit: {}", data["runtime_optimization"]["cpu_limit"]); println!(" IO timeout: {}", data["runtime_optimization"]["io_timeout"]); Ok(()) }

🎯 What You've Learned

1. Zero-copy parsing - Minimize memory allocations and copying 2. Memory optimization - Memory pools, garbage collection, and efficient data structures 3. Parallel processing - Multi-threaded parsing and FUJSEN execution 4. Intelligent caching - Multi-level and adaptive caching strategies 5. Database optimization - Connection pooling and query optimization 6. Performance monitoring - Real-time metrics and benchmarking 7. Optimization strategies - Compile-time and runtime optimizations

🚀 Next Steps

1. Profile your application - Use the benchmarking tools to identify bottlenecks 2. Implement optimizations - Apply the optimization techniques to your specific use case 3. Monitor performance - Set up continuous performance monitoring 4. Scale your application - Use the optimization strategies to handle increased load 5. Optimize for your environment - Tailor optimizations to your deployment environment

---

You now have complete performance optimization mastery with TuskLang Rust! From zero-copy parsing to intelligent caching, from parallel processing to memory optimization - TuskLang gives you the tools to build applications that scale with maximum efficiency and minimal resource usage.