🦀 Event-Driven Architecture in TuskLang with Rust

Rust Documentation

Event-Driven Architecture in TuskLang with Rust

🎯 Event-Driven Foundation

Event-driven architecture with TuskLang and Rust provides a powerful foundation for building scalable, loosely-coupled systems that can handle complex business workflows and real-time data processing. This guide covers event sourcing, CQRS, and event streaming patterns.

🏗️ Event Architecture

Event System Design

[event_architecture]
pattern: "event_sourcing"
storage: "event_store"
processing: "stream_processing"
projections: "real_time"

[architecture_principles] event_first: true immutable_events: true temporal_ordering: true causal_consistency: true

Event Types

[event_types]
domain_events: true
integration_events: true
system_events: true
audit_events: true

[event_categories] user_events: - "UserCreated" - "UserUpdated" - "UserDeleted" order_events: - "OrderPlaced" - "OrderConfirmed" - "OrderShipped" - "OrderDelivered" payment_events: - "PaymentInitiated" - "PaymentProcessed" - "PaymentFailed" - "PaymentRefunded"

🔧 Event Implementation

Event Structure

[event_structure]
event_id: "uuid"
event_type: "string"
aggregate_id: "uuid"
version: "integer"
timestamp: "datetime"
data: "json"
metadata: "json"

[event_implementation] use serde::{Deserialize, Serialize}; use uuid::Uuid; use chrono::{DateTime, Utc};

#[derive(Debug, Clone, Serialize, Deserialize)] pub struct Event { pub event_id: Uuid, pub event_type: String, pub aggregate_id: Uuid, pub version: u64, pub timestamp: DateTime<Utc>, pub data: serde_json::Value, pub metadata: EventMetadata, }

#[derive(Debug, Clone, Serialize, Deserialize)] pub struct EventMetadata { pub user_id: Option<Uuid>, pub correlation_id: Option<Uuid>, pub causation_id: Option<Uuid>, pub source: String, pub version: String, }

Event Store

[event_store]
backend: "postgresql"
streaming: "kafka"
caching: "redis"

[store_config] postgresql: connection_string: "@env('EVENT_STORE_DB_URL')" table_name: "events" partitioning: "by_aggregate" kafka: brokers: ["kafka-1:9092", "kafka-2:9092"] topic_prefix: "events" retention: "7d" redis: connection_string: "@env('REDIS_URL')" cache_ttl: "1h" event_cache: true

🔄 Event Sourcing

Aggregate Design

[aggregate_design]
pattern: "domain_aggregate"
state_management: "event_based"
command_handling: "command_bus"
event_application: "state_machine"

[aggregate_implementation] pub trait Aggregate { type Command; type Event; type Error; fn apply(&mut self, event: &Self::Event); fn handle(&self, command: Self::Command) -> Result<Vec<Self::Event>, Self::Error>; }

pub struct UserAggregate { id: Uuid, email: String, name: String, status: UserStatus, version: u64, }

impl Aggregate for UserAggregate { type Command = UserCommand; type Event = UserEvent; type Error = UserError; fn apply(&mut self, event: &Self::Event) { match event { UserEvent::UserCreated { id, email, name } => { self.id = *id; self.email = email.clone(); self.name = name.clone(); self.status = UserStatus::Active; } UserEvent::UserUpdated { name, .. } => { self.name = name.clone(); } UserEvent::UserDeleted { .. } => { self.status = UserStatus::Deleted; } } self.version += 1; } fn handle(&self, command: Self::Command) -> Result<Vec<Self::Event>, Self::Error> { match command { UserCommand::CreateUser { email, name } => { Ok(vec![UserEvent::UserCreated { id: Uuid::new_v4(), email, name, }]) } UserCommand::UpdateUser { name } => { Ok(vec![UserEvent::UserUpdated { id: self.id, name, }]) } UserCommand::DeleteUser => { Ok(vec![UserEvent::UserDeleted { id: self.id, }]) } } } }

Event Store Operations

[event_store_operations]
append_events: true
read_events: true
snapshots: true
projections: true

[store_operations] pub struct EventStore { db: PgPool, kafka_producer: KafkaProducer, redis: RedisPool, }

impl EventStore { pub async fn append_events( &self, aggregate_id: Uuid, expected_version: u64, events: Vec<Event>, ) -> Result<(), EventStoreError> { let mut transaction = self.db.begin().await?; // Check version let current_version = self.get_current_version(&mut transaction, aggregate_id).await?; if current_version != expected_version { return Err(EventStoreError::ConcurrencyConflict); } // Store events for event in events { self.store_event(&mut transaction, &event).await?; } // Publish to Kafka for event in &events { self.publish_event(event).await?; } transaction.commit().await?; Ok(()) } pub async fn read_events( &self, aggregate_id: Uuid, from_version: u64, ) -> Result<Vec<Event>, EventStoreError> { let events = sqlx::query_as!( Event, "SELECT * FROM events WHERE aggregate_id = $1 AND version > $2 ORDER BY version", aggregate_id, from_version ) .fetch_all(&self.db) .await?; Ok(events) } }

📊 CQRS Implementation

Command Side

[command_side]
command_bus: "in_memory"
command_handlers: "async"
validation: "command_validators"

[command_implementation] pub struct CommandBus { handlers: HashMap<TypeId, Box<dyn CommandHandler>>, }

impl CommandBus { pub async fn dispatch<C: Command>(&self, command: C) -> Result<Vec<Event>, CommandError> { let handler = self.handlers.get(&TypeId::of::<C>()) .ok_or(CommandError::HandlerNotFound)?; handler.handle(command).await } }

pub trait CommandHandler: Send + Sync { type Command: Command; type Event: Event; type Error; async fn handle(&self, command: Self::Command) -> Result<Vec<Self::Event>, Self::Error>; }

Query Side

[query_side]
read_models: "optimized"
query_handlers: "async"
caching: "redis"

[query_implementation] pub struct QueryBus { handlers: HashMap<TypeId, Box<dyn QueryHandler>>, cache: RedisPool, }

impl QueryBus { pub async fn dispatch<Q: Query>(&self, query: Q) -> Result<Q::Result, QueryError> { // Check cache first if let Some(cached) = self.cache.get(&query.cache_key()).await? { return Ok(cached); } let handler = self.handlers.get(&TypeId::of::<Q>()) .ok_or(QueryError::HandlerNotFound)?; let result = handler.handle(query).await?; // Cache result self.cache.set(&query.cache_key(), &result, Duration::from_secs(300)).await?; Ok(result) } }

pub trait QueryHandler: Send + Sync { type Query: Query; type Result; type Error; async fn handle(&self, query: Self::Query) -> Result<Self::Result, Self::Error>; }

🔄 Event Streaming

Kafka Integration

[kafka_integration]
producer: "async"
consumer: "consumer_groups"
streaming: "kafka_streams"

[kafka_config] brokers: ["kafka-1:9092", "kafka-2:9092", "kafka-3:9092"] topics: ["user_events", "order_events", "payment_events"] consumer_groups: ["user_service", "order_service", "notification_service"]

Event Producer

[event_producer]
async_producer: true
batch_publishing: true
error_handling: true

[producer_implementation] pub struct EventProducer { producer: KafkaProducer, topic: String, }

impl EventProducer { pub async fn publish_event(&self, event: &Event) -> Result<(), ProducerError> { let key = event.aggregate_id.to_string(); let value = serde_json::to_string(event)?; self.producer .send(ProducerRecord::new(&self.topic, &key, &value)) .await?; Ok(()) } pub async fn publish_events(&self, events: &[Event]) -> Result<(), ProducerError> { let records: Vec<ProducerRecord<_, _>> = events .iter() .map(|event| { let key = event.aggregate_id.to_string(); let value = serde_json::to_string(event).unwrap(); ProducerRecord::new(&self.topic, &key, &value) }) .collect(); for record in records { self.producer.send(record).await?; } Ok(()) } }

Event Consumer

[event_consumer]
consumer_groups: true
offset_management: true
error_handling: true

[consumer_implementation] pub struct EventConsumer { consumer: KafkaConsumer, handlers: HashMap<String, Box<dyn EventHandler>>, }

impl EventConsumer { pub async fn start_consuming(&mut self) -> Result<(), ConsumerError> { loop { let records = self.consumer.poll(Duration::from_millis(100)).await?; for record in records { let event: Event = serde_json::from_slice(record.value())?; if let Some(handler) = self.handlers.get(&event.event_type) { handler.handle(&event).await?; } } } } }

pub trait EventHandler: Send + Sync { async fn handle(&self, event: &Event) -> Result<(), HandlerError>; }

📈 Projections

Read Model Projections

[read_model_projections]
real_time: true
batch_processing: true
materialized_views: true

[projection_implementation] pub struct UserProjection { db: PgPool, cache: RedisPool, }

impl EventHandler for UserProjection { async fn handle(&self, event: &Event) -> Result<(), HandlerError> { match event.event_type.as_str() { "UserCreated" => { let data: UserCreatedData = serde_json::from_value(event.data.clone())?; self.create_user(&data).await?; } "UserUpdated" => { let data: UserUpdatedData = serde_json::from_value(event.data.clone())?; self.update_user(&data).await?; } "UserDeleted" => { let data: UserDeletedData = serde_json::from_value(event.data.clone())?; self.delete_user(&data).await?; } _ => {} } Ok(()) } }

impl UserProjection { async fn create_user(&self, data: &UserCreatedData) -> Result<(), ProjectionError> { sqlx::query!( "INSERT INTO users (id, email, name, status, created_at) VALUES ($1, $2, $3, $4, $5)", data.id, data.email, data.name, "active", chrono::Utc::now() ) .execute(&self.db) .await?; // Invalidate cache self.cache.del(&format!("user:{}", data.id)).await?; Ok(()) } }

Materialized Views

[materialized_views]
refresh_strategy: "incremental"
indexing: "optimized"
partitioning: "by_date"

[view_implementation] pub struct UserStatsView { db: PgPool, }

impl UserStatsView { pub async fn refresh(&self) -> Result<(), ViewError> { sqlx::query!( r#" REFRESH MATERIALIZED VIEW CONCURRENTLY user_stats "# ) .execute(&self.db) .await?; Ok(()) } pub async fn get_user_stats(&self) -> Result<UserStats, ViewError> { let stats = sqlx::query_as!( UserStats, "SELECT * FROM user_stats" ) .fetch_one(&self.db) .await?; Ok(stats) } }

🔄 Saga Pattern

Saga Implementation

[saga_implementation]
coordination: "choreography"
compensation: "automatic"
monitoring: "distributed"

[saga_pattern] pub struct OrderSaga { order_id: Uuid, steps: Vec<SagaStep>, current_step: usize, status: SagaStatus, }

impl OrderSaga { pub async fn execute(&mut self) -> Result<(), SagaError> { for (i, step) in self.steps.iter().enumerate() { self.current_step = i; match step.execute().await { Ok(_) => { self.status = SagaStatus::InProgress; } Err(error) => { self.status = SagaStatus::Failed; self.compensate().await?; return Err(error); } } } self.status = SagaStatus::Completed; Ok(()) } async fn compensate(&mut self) -> Result<(), SagaError> { for step in self.steps[..self.current_step].iter().rev() { step.compensate().await?; } Ok(()) } }

🔍 Event Monitoring

Event Metrics

[event_metrics]
event_count: true
processing_latency: true
error_rate: true
throughput: true

[metrics_config] prometheus_metrics: true custom_metrics: true business_metrics: true

Event Tracing

[event_tracing]
distributed_tracing: true
correlation_ids: true
causation_ids: true

[tracing_config] jaeger_endpoint: "@env('JAEGER_ENDPOINT')" trace_sampling: 0.1 correlation_propagation: true

🚀 Performance Optimization

Event Processing

[event_processing]
parallel_processing: true
batch_processing: true
streaming: true

[processing_config] worker_threads: 4 batch_size: 100 processing_timeout: "30s"

Caching Strategy

[caching_strategy]
read_through: true
write_through: true
cache_aside: true

[cache_config] redis_cache: "distributed" cache_ttl: "1h" cache_invalidation: "event_driven"

🔧 Development Tools

Event Testing

[event_testing]
unit_tests: true
integration_tests: true
event_replay: true

[testing_config] test_event_store: "in_memory" event_replay: "from_snapshot" integration_testing: "docker_compose"

Event Debugging

[event_debugging]
event_logging: true
event_inspection: true
event_replay: true

[debug_config] event_log_level: "debug" event_inspection: "web_ui" event_replay: "cli_tool"

🎯 Best Practices

1. Event Design

- Design events for business meaning - Keep events immutable - Use semantic event names - Include all necessary data

2. Event Sourcing

- Use aggregates for consistency - Implement proper versioning - Handle concurrency conflicts - Use snapshots for performance

3. CQRS

- Separate read and write models - Optimize for specific use cases - Use appropriate consistency levels - Implement proper caching

4. Event Streaming

- Use appropriate partitioning - Handle backpressure - Implement proper error handling - Monitor event processing

5. Monitoring

- Track event processing metrics - Monitor event store performance - Implement proper alerting - Use distributed tracing

Event-driven architecture with TuskLang and Rust provides a powerful foundation for building scalable, maintainable, and performant systems that can handle complex business workflows and real-time data processing.