🦀 Serverless Architecture in TuskLang with Rust

Rust Documentation

Serverless Architecture in TuskLang with Rust

☁️ Serverless Foundation

Serverless architecture with TuskLang and Rust provides the perfect combination for building scalable, cost-effective, and maintainable cloud-native applications. This guide covers AWS Lambda, Azure Functions, and modern serverless patterns.

🏗️ Serverless Architecture

Serverless Principles

[serverless_principles]
event_driven: true
stateless: true
auto_scaling: true
pay_per_use: true

[architecture_patterns] function_as_service: true backend_as_service: true event_driven_processing: true microservices: true

Serverless Components

[serverless_components]
compute: "lambda_functions"
storage: "s3_dynamodb"
messaging: "sqs_sns"
api: "api_gateway"

🔧 AWS Lambda Integration

Lambda Function Configuration

[lambda_config]
runtime: "provided.al2"
memory_size: 512
timeout: 30
environment: "tusk_config"

[lambda_function] name: "tusk-processor" handler: "bootstrap" runtime: "provided.al2" memory_size: 512 timeout: 30 environment: RUST_LOG: "info" TUSK_CONFIG: "lambda.tusk"

Lambda Function Implementation

[lambda_implementation]
use lambda_runtime::{service_fn, LambdaEvent, Error};
use serde_json::{json, Value};

#[tokio::main] async fn main() -> Result<(), Error> { let config = tusk_config::load("lambda.tusk")?; lambda_runtime::run(service_fn(|event: LambdaEvent<Value>| { async move { let payload = event.payload; let context = event.context; // Process the event using TuskLang configuration let result = process_event(&config, &payload).await?; Ok(json!({ "statusCode": 200, "body": result })) } })) .await?; Ok(()) }

async fn process_event(config: &Config, payload: &Value) -> Result<Value, Error> { // Use TuskLang configuration for processing let processor_config = &config.processor; match payload["type"].as_str() { Some("data_processing") => { let result = process_data(&processor_config.data_processing, payload).await?; Ok(json!({ "result": result })) } Some("ml_inference") => { let result = run_ml_inference(&processor_config.ml, payload).await?; Ok(json!({ "prediction": result })) } _ => Err(Error::from("Unknown event type")) } }

TuskLang Lambda Configuration

[lambda_tusk_config]

lambda.tusk

[lambda] function_name: "@env('AWS_LAMBDA_FUNCTION_NAME')" memory_size: 512 timeout: 30 environment: "production"

[processor] data_processing: batch_size: 100 timeout: "10s" retry_attempts: 3 ml_inference: model_path: "@file.read('models/model.onnx')" batch_size: 32 gpu_enabled: false

[storage] s3_bucket: "@env('S3_BUCKET')" dynamodb_table: "@env('DYNAMODB_TABLE')"

[monitoring] cloudwatch_logs: true xray_tracing: true custom_metrics: true

🌐 API Gateway Integration

API Gateway Configuration

[api_gateway_config]
rest_api: true
websocket: true
authorization: "jwt"
rate_limiting: true

[gateway_routes] get_users: "GET /users" create_user: "POST /users" update_user: "PUT /users/{id}" delete_user: "DELETE /users/{id}"

[gateway_integration] lambda_integration: true cors_enabled: true request_validation: true response_mapping: true

API Gateway Handler

[api_gateway_handler]
use aws_lambda_events::apigw::{ApiGatewayProxyRequest, ApiGatewayProxyResponse};
use aws_lambda_events::encodings::Body;
use http::HeaderMap;

async fn api_handler( event: LambdaEvent<ApiGatewayProxyRequest>, ) -> Result<ApiGatewayProxyResponse, Error> { let config = tusk_config::load("api.tusk")?; let request = event.payload; let response = match request.path.as_str() { "/users" => handle_users(&config, &request).await?, "/users/{id}" => handle_user_by_id(&config, &request).await?, _ => ApiGatewayProxyResponse { status_code: 404, headers: HeaderMap::new(), body: Body::Text("Not Found".to_string()), is_base64_encoded: false, } }; Ok(response) }

async fn handle_users(config: &Config, request: &ApiGatewayProxyRequest) -> Result<ApiGatewayProxyResponse, Error> { match request.http_method.as_str() { "GET" => { let users = get_users(&config.database).await?; Ok(ApiGatewayProxyResponse { status_code: 200, headers: HeaderMap::new(), body: Body::Text(serde_json::to_string(&users)?), is_base64_encoded: false, }) } "POST" => { let user_data: UserData = serde_json::from_str(&request.body.unwrap_or_default())?; let user = create_user(&config.database, &user_data).await?; Ok(ApiGatewayProxyResponse { status_code: 201, headers: HeaderMap::new(), body: Body::Text(serde_json::to_string(&user)?), is_base64_encoded: false, }) } _ => Err(Error::from("Method not allowed")) } }

🗄️ Database Integration

DynamoDB Integration

[dynamodb_integration]
client: "aws_sdk_dynamodb"
table_design: "single_table"
query_optimization: true

[dynamodb_config] table_name: "@env('DYNAMODB_TABLE')" region: "@env('AWS_REGION')" endpoint: "@env('DYNAMODB_ENDPOINT')"

[dynamodb_operations] pub struct DynamoDBClient { client: aws_sdk_dynamodb::Client, table_name: String, }

impl DynamoDBClient { pub async fn get_item(&self, key: &str) -> Result<Option<Value>, Error> { let result = self.client .get_item() .table_name(&self.table_name) .key("id", aws_sdk_dynamodb::types::AttributeValue::S(key.to_string())) .send() .await?; Ok(result.item.map(|item| { serde_dynamo::from_item(item).unwrap() })) } pub async fn put_item(&self, item: &Value) -> Result<(), Error> { let item = serde_dynamo::to_item(item)?; self.client .put_item() .table_name(&self.table_name) .set_item(Some(item)) .send() .await?; Ok(()) } pub async fn query(&self, pk: &str, sk: Option<&str>) -> Result<Vec<Value>, Error> { let mut query = self.client .query() .table_name(&self.table_name) .key_condition_expression("pk = :pk") .expression_attribute_values(":pk", aws_sdk_dynamodb::types::AttributeValue::S(pk.to_string())); if let Some(sk_value) = sk { query = query .key_condition_expression("pk = :pk AND begins_with(sk, :sk)") .expression_attribute_values(":sk", aws_sdk_dynamodb::types::AttributeValue::S(sk_value.to_string())); } let result = query.send().await?; let items: Vec<Value> = result.items .unwrap_or_default() .into_iter() .map(|item| serde_dynamo::from_item(item).unwrap()) .collect(); Ok(items) } }

S3 Integration

[s3_integration]
client: "aws_sdk_s3"
bucket_operations: true
file_processing: true

[s3_config] bucket_name: "@env('S3_BUCKET')" region: "@env('AWS_REGION')" endpoint: "@env('S3_ENDPOINT')"

[s3_operations] pub struct S3Client { client: aws_sdk_s3::Client, bucket_name: String, }

impl S3Client { pub async fn upload_file(&self, key: &str, data: &[u8]) -> Result<(), Error> { self.client .put_object() .bucket(&self.bucket_name) .key(key) .body(aws_sdk_s3::types::ByteStream::from(data.to_vec())) .send() .await?; Ok(()) } pub async fn download_file(&self, key: &str) -> Result<Vec<u8>, Error> { let result = self.client .get_object() .bucket(&self.bucket_name) .key(key) .send() .await?; let data = result.body.collect().await?.into_bytes(); Ok(data.to_vec()) } pub async fn list_files(&self, prefix: &str) -> Result<Vec<String>, Error> { let result = self.client .list_objects_v2() .bucket(&self.bucket_name) .prefix(prefix) .send() .await?; let keys: Vec<String> = result.contents .unwrap_or_default() .into_iter() .filter_map(|obj| obj.key) .collect(); Ok(keys) } }

🔄 Event-Driven Processing

SQS Integration

[sqs_integration]
queue_operations: true
message_processing: true
dead_letter_queue: true

[sqs_config] queue_url: "@env('SQS_QUEUE_URL')" region: "@env('AWS_REGION')" visibility_timeout: 30

[sqs_operations] pub struct SQSClient { client: aws_sdk_sqs::Client, queue_url: String, }

impl SQSClient { pub async fn send_message(&self, message: &Value) -> Result<(), Error> { let message_body = serde_json::to_string(message)?; self.client .send_message() .queue_url(&self.queue_url) .message_body(message_body) .send() .await?; Ok(()) } pub async fn receive_messages(&self, max_messages: i32) -> Result<Vec<Message>, Error> { let result = self.client .receive_message() .queue_url(&self.queue_url) .max_number_of_messages(max_messages) .send() .await?; Ok(result.messages.unwrap_or_default()) } pub async fn delete_message(&self, receipt_handle: &str) -> Result<(), Error> { self.client .delete_message() .queue_url(&self.queue_url) .receipt_handle(receipt_handle) .send() .await?; Ok(()) } }

SNS Integration

[sns_integration]
topic_operations: true
message_publishing: true
subscription_management: true

[sns_config] topic_arn: "@env('SNS_TOPIC_ARN')" region: "@env('AWS_REGION')"

[sns_operations] pub struct SNSClient { client: aws_sdk_sns::Client, topic_arn: String, }

impl SNSClient { pub async fn publish_message(&self, message: &Value) -> Result<(), Error> { let message_body = serde_json::to_string(message)?; self.client .publish() .topic_arn(&self.topic_arn) .message(message_body) .send() .await?; Ok(()) } pub async fn publish_with_attributes(&self, message: &Value, attributes: HashMap<String, String>) -> Result<(), Error> { let message_body = serde_json::to_string(message)?; let mut publish_request = self.client .publish() .topic_arn(&self.topic_arn) .message(message_body); for (key, value) in attributes { publish_request = publish_request.message_attributes(key, aws_sdk_sns::types::MessageAttributeValue::builder().string_value(value).build()); } publish_request.send().await?; Ok(()) } }

🔒 Security Implementation

IAM Integration

[iam_integration]
role_assumption: true
permission_management: true
security_best_practices: true

[iam_config] role_arn: "@env('LAMBDA_ROLE_ARN')" session_duration: 3600 permissions_boundary: true

[iam_operations] pub struct IAMClient { client: aws_sdk_sts::Client, }

impl IAMClient { pub async fn assume_role(&self, role_arn: &str, session_name: &str) -> Result<Credentials, Error> { let result = self.client .assume_role() .role_arn(role_arn) .role_session_name(session_name) .duration_seconds(3600) .send() .await?; let credentials = result.credentials.unwrap(); Ok(Credentials { access_key_id: credentials.access_key_id.unwrap(), secret_access_key: credentials.secret_access_key.unwrap(), session_token: credentials.session_token, }) } }

KMS Integration

[kms_integration]
encryption: true
decryption: true
key_management: true

[kms_config] key_id: "@env('KMS_KEY_ID')" region: "@env('AWS_REGION')"

[kms_operations] pub struct KMSClient { client: aws_sdk_kms::Client, key_id: String, }

impl KMSClient { pub async fn encrypt(&self, plaintext: &[u8]) -> Result<Vec<u8>, Error> { let result = self.client .encrypt() .key_id(&self.key_id) .plaintext(aws_sdk_kms::types::Blob::new(plaintext)) .send() .await?; Ok(result.ciphertext_blob.unwrap().into_inner()) } pub async fn decrypt(&self, ciphertext: &[u8]) -> Result<Vec<u8>, Error> { let result = self.client .decrypt() .ciphertext_blob(aws_sdk_kms::types::Blob::new(ciphertext)) .send() .await?; Ok(result.plaintext.unwrap().into_inner()) } }

📊 Monitoring & Observability

CloudWatch Integration

[cloudwatch_integration]
metrics: true
logs: true
alarms: true

[cloudwatch_config] namespace: "@env('CLOUDWATCH_NAMESPACE')" region: "@env('AWS_REGION')"

[cloudwatch_operations] pub struct CloudWatchClient { client: aws_sdk_cloudwatch::Client, namespace: String, }

impl CloudWatchClient { pub async fn put_metric(&self, metric_name: &str, value: f64, unit: &str) -> Result<(), Error> { self.client .put_metric_data() .namespace(&self.namespace) .metric_data( aws_sdk_cloudwatch::types::MetricDatum::builder() .metric_name(metric_name) .value(value) .unit(aws_sdk_cloudwatch::types::StandardUnit::from(unit)) .build() ) .send() .await?; Ok(()) } pub async fn put_custom_metric(&self, metric_name: &str, value: f64, dimensions: Vec<(String, String)>) -> Result<(), Error> { let mut metric_datum = aws_sdk_cloudwatch::types::MetricDatum::builder() .metric_name(metric_name) .value(value); for (name, value) in dimensions { metric_datum = metric_datum.dimensions( aws_sdk_cloudwatch::types::Dimension::builder() .name(name) .value(value) .build() ); } self.client .put_metric_data() .namespace(&self.namespace) .metric_data(metric_datum.build()) .send() .await?; Ok(()) } }

X-Ray Integration

[xray_integration]
distributed_tracing: true
segment_management: true
subsegment_creation: true

[xray_config] service_name: "@env('XRAY_SERVICE_NAME')" region: "@env('AWS_REGION')"

[xray_operations] pub struct XRayClient { client: aws_sdk_xray::Client, service_name: String, }

impl XRayClient { pub async fn start_segment(&self, name: &str) -> Result<String, Error> { let segment_id = Uuid::new_v4().to_string(); // Start segment logic Ok(segment_id) } pub async fn end_segment(&self, segment_id: &str) -> Result<(), Error> { // End segment logic Ok(()) } pub async fn add_subsegment(&self, parent_id: &str, name: &str) -> Result<String, Error> { let subsegment_id = Uuid::new_v4().to_string(); // Add subsegment logic Ok(subsegment_id) } }

🚀 Deployment & CI/CD

SAM Template

[sam_template]
template_format: "yaml"
functions: "lambda_functions"
resources: "aws_resources"

[sam_config] AWSTemplateFormatVersion: "2010-09-09" Transform: "AWS::Serverless-2016-10-31"

Resources: TuskProcessorFunction: Type: AWS::Serverless::Function Properties: CodeUri: ./target/lambda/release/ Handler: bootstrap Runtime: provided.al2 MemorySize: 512 Timeout: 30 Environment: Variables: RUST_LOG: info TUSK_CONFIG: lambda.tusk Events: ApiEvent: Type: Api Properties: Path: /process Method: post SQSEvent: Type: SQS Properties: Queue: !GetAtt ProcessingQueue.Arn BatchSize: 10

GitHub Actions

[github_actions]
workflow: "deploy_lambda"
build: "rust_build"
deploy: "sam_deploy"

[workflow_config] name: Deploy Lambda Functions

on: push: branches: [main]

jobs: build-and-deploy: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - name: Setup Rust uses: actions-rs/toolchain@v1 with: toolchain: stable target: x86_64-unknown-linux-musl - name: Build Lambda run: | cargo build --release --target x86_64-unknown-linux-musl cp target/x86_64-unknown-linux-musl/release/tusk-processor bootstrap zip -j tusk-processor.zip bootstrap - name: Deploy with SAM run: | sam build sam deploy --no-confirm-changeset

🎯 Best Practices

1. Function Design

- Keep functions small and focused - Use appropriate memory and timeout settings - Implement proper error handling - Use environment variables for configuration

2. Performance

- Optimize cold start times - Use connection pooling - Implement caching strategies - Monitor function performance

3. Security

- Use least privilege IAM roles - Encrypt sensitive data - Implement proper authentication - Regular security audits

4. Monitoring

- Set up comprehensive logging - Use CloudWatch metrics - Implement distributed tracing - Set up proper alerting

5. Cost Optimization

- Monitor function execution times - Use appropriate memory allocation - Implement efficient data processing - Regular cost reviews

Serverless architecture with TuskLang and Rust provides a powerful foundation for building scalable, cost-effective, and maintainable cloud-native applications that can automatically scale based on demand.