🦀 Performance Optimization in TuskLang with Rust

Rust Documentation

Performance Optimization in TuskLang with Rust

⚡ Performance Foundation

Performance optimization with TuskLang and Rust provides powerful tools for building high-performance applications. This guide covers profiling, benchmarking, memory optimization, and advanced optimization techniques.

🏗️ Performance Architecture

Optimization Strategy

[performance_architecture]
profiling: true
benchmarking: true
memory_optimization: true
cpu_optimization: true

[optimization_components] criterion: "benchmarking_framework" perf: "profiling_tools" heim: "system_metrics" rayon: "parallel_processing"

Performance Configuration

[performance_configuration]
profiling_enabled: true
benchmarking_enabled: true
metrics_collection: true
optimization_level: "release"

[performance_implementation] use std::time::{Duration, Instant}; use std::collections::HashMap; use tokio::sync::RwLock;

// Performance monitor pub struct PerformanceMonitor { metrics: Arc<RwLock<HashMap<String, MetricData>>>, config: PerformanceConfig, }

#[derive(Debug, Clone)] pub struct PerformanceConfig { pub enable_profiling: bool, pub enable_benchmarking: bool, pub metrics_retention_days: u32, pub performance_threshold_ms: u64, }

#[derive(Debug, Clone)] pub struct MetricData { pub count: u64, pub total_time: Duration, pub min_time: Duration, pub max_time: Duration, pub avg_time: Duration, pub last_updated: Instant, }

impl PerformanceMonitor { pub fn new(config: PerformanceConfig) -> Self { Self { metrics: Arc::new(RwLock::new(HashMap::new())), config, } } pub async fn record_metric(&self, name: &str, duration: Duration) { if !self.config.enable_profiling { return; } let mut metrics = self.metrics.write().await; let metric = metrics.entry(name.to_string()).or_insert_with(|| MetricData { count: 0, total_time: Duration::ZERO, min_time: Duration::MAX, max_time: Duration::ZERO, avg_time: Duration::ZERO, last_updated: Instant::now(), }); metric.count += 1; metric.total_time += duration; metric.min_time = metric.min_time.min(duration); metric.max_time = metric.max_time.max(duration); metric.avg_time = metric.total_time / metric.count; metric.last_updated = Instant::now(); } pub async fn get_metrics(&self) -> HashMap<String, MetricData> { self.metrics.read().await.clone() } pub async fn get_metric(&self, name: &str) -> Option<MetricData> { self.metrics.read().await.get(name).cloned() } pub async fn clear_metrics(&self) { self.metrics.write().await.clear(); } }

// Performance profiler pub struct PerformanceProfiler { monitor: Arc<PerformanceMonitor>, }

impl PerformanceProfiler { pub fn new(monitor: Arc<PerformanceMonitor>) -> Self { Self { monitor } } pub async fn profile<F, T>(&self, name: &str, f: F) -> T where F: FnOnce() -> T, { let start = Instant::now(); let result = f(); let duration = start.elapsed(); self.monitor.record_metric(name, duration).await; result } pub async fn profile_async<F, Fut, T>(&self, name: &str, f: F) -> T where F: FnOnce() -> Fut, Fut: Future<Output = T>, { let start = Instant::now(); let result = f().await; let duration = start.elapsed(); self.monitor.record_metric(name, duration).await; result } }

📊 Profiling and Benchmarking

Criterion Benchmarking

[profiling_benchmarking]
criterion_benchmarks: true
custom_benchmarks: true
performance_tests: true

[benchmarking_implementation] use criterion::{black_box, criterion_group, criterion_main, Criterion};

// Benchmark functions pub fn fibonacci_recursive(n: u64) -> u64 { match n { 0 => 0, 1 => 1, _ => fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2), } }

pub fn fibonacci_iterative(n: u64) -> u64 { if n <= 1 { return n; } let mut a = 0; let mut b = 1; for _ in 2..=n { let temp = a + b; a = b; b = temp; } b }

pub fn fibonacci_memoized(n: u64) -> u64 { use std::collections::HashMap; use std::sync::Mutex; use once_cell::sync::Lazy; static CACHE: Lazy<Mutex<HashMap<u64, u64>>> = Lazy::new(|| Mutex::new(HashMap::new())); if n <= 1 { return n; } { let cache = CACHE.lock().unwrap(); if let Some(&result) = cache.get(&n) { return result; } } let result = fibonacci_memoized(n - 1) + fibonacci_memoized(n - 2); { let mut cache = CACHE.lock().unwrap(); cache.insert(n, result); } result }

// Criterion benchmarks pub fn fibonacci_benchmarks(c: &mut Criterion) { let mut group = c.benchmark_group("fibonacci"); group.bench_function("recursive_10", |b| { b.iter(|| fibonacci_recursive(black_box(10))) }); group.bench_function("iterative_10", |b| { b.iter(|| fibonacci_iterative(black_box(10))) }); group.bench_function("memoized_10", |b| { b.iter(|| fibonacci_memoized(black_box(10))) }); group.bench_function("recursive_20", |b| { b.iter(|| fibonacci_recursive(black_box(20))) }); group.bench_function("iterative_20", |b| { b.iter(|| fibonacci_iterative(black_box(20))) }); group.bench_function("memoized_20", |b| { b.iter(|| fibonacci_memoized(black_box(20))) }); group.finish(); }

// Custom benchmarking framework pub struct CustomBenchmark { name: String, iterations: usize, warmup_iterations: usize, }

impl CustomBenchmark { pub fn new(name: String) -> Self { Self { name, iterations: 1000, warmup_iterations: 100, } } pub fn iterations(mut self, iterations: usize) -> Self { self.iterations = iterations; self } pub fn warmup_iterations(mut self, warmup: usize) -> Self { self.warmup_iterations = warmup; self } pub fn run<F>(&self, f: F) -> BenchmarkResult where F: Fn() + Copy, { // Warmup for _ in 0..self.warmup_iterations { f(); } // Actual benchmark let mut times = Vec::with_capacity(self.iterations); for _ in 0..self.iterations { let start = Instant::now(); f(); times.push(start.elapsed()); } // Calculate statistics let total_time: Duration = times.iter().sum(); let avg_time = total_time / self.iterations as u32; let min_time = times.iter().min().unwrap_or(&Duration::ZERO); let max_time = times.iter().max().unwrap_or(&Duration::ZERO); BenchmarkResult { name: self.name.clone(), iterations: self.iterations, total_time, avg_time, min_time: *min_time, max_time: *max_time, times, } } }

#[derive(Debug)] pub struct BenchmarkResult { pub name: String, pub iterations: usize, pub total_time: Duration, pub avg_time: Duration, pub min_time: Duration, pub max_time: Duration, pub times: Vec<Duration>, }

impl BenchmarkResult { pub fn print_summary(&self) { println!("Benchmark: {}", self.name); println!(" Iterations: {}", self.iterations); println!(" Total time: {:?}", self.total_time); println!(" Average time: {:?}", self.avg_time); println!(" Min time: {:?}", self.min_time); println!(" Max time: {:?}", self.max_time); println!(" Throughput: {:.2} ops/sec", self.iterations as f64 / self.total_time.as_secs_f64()); } }

Performance Testing

[performance_testing]
load_testing: true
stress_testing: true
endurance_testing: true

[testing_implementation] use tokio::time::sleep;

// Load test framework pub struct LoadTest { name: String, concurrency: usize, duration: Duration, requests_per_second: usize, }

impl LoadTest { pub fn new(name: String) -> Self { Self { name, concurrency: 10, duration: Duration::from_secs(60), requests_per_second: 100, } } pub fn concurrency(mut self, concurrency: usize) -> Self { self.concurrency = concurrency; self } pub fn duration(mut self, duration: Duration) -> Self { self.duration = duration; self } pub fn requests_per_second(mut self, rps: usize) -> Self { self.requests_per_second = rps; self } pub async fn run<F, Fut>(&self, test_function: F) -> LoadTestResult where F: Fn() -> Fut + Send + Sync + 'static, Fut: Future<Output = Result<(), String>> + Send, { let start_time = Instant::now(); let mut results = Vec::new(); let mut handles = Vec::new(); // Spawn worker tasks for worker_id in 0..self.concurrency { let test_function = test_function.clone(); let worker_duration = self.duration; let requests_per_worker = self.requests_per_second / self.concurrency; let handle = tokio::spawn(async move { let mut worker_results = Vec::new(); let interval = Duration::from_secs(1) / requests_per_worker as u32; while start_time.elapsed() < worker_duration { let request_start = Instant::now(); let result = test_function().await; let request_duration = request_start.elapsed(); worker_results.push(WorkerResult { worker_id, success: result.is_ok(), duration: request_duration, error: result.err(), }); sleep(interval).await; } worker_results }); handles.push(handle); } // Collect results for handle in handles { let worker_results = handle.await.unwrap(); results.extend(worker_results); } LoadTestResult { name: self.name.clone(), total_requests: results.len(), successful_requests: results.iter().filter(|r| r.success).count(), failed_requests: results.iter().filter(|r| !r.success).count(), total_duration: start_time.elapsed(), avg_response_time: results.iter().map(|r| r.duration).sum::<Duration>() / results.len() as u32, min_response_time: results.iter().map(|r| r.duration).min().unwrap_or(Duration::ZERO), max_response_time: results.iter().map(|r| r.duration).max().unwrap_or(Duration::ZERO), results, } } }

#[derive(Debug)] pub struct WorkerResult { pub worker_id: usize, pub success: bool, pub duration: Duration, pub error: Option<String>, }

#[derive(Debug)] pub struct LoadTestResult { pub name: String, pub total_requests: usize, pub successful_requests: usize, pub failed_requests: usize, pub total_duration: Duration, pub avg_response_time: Duration, pub min_response_time: Duration, pub max_response_time: Duration, pub results: Vec<WorkerResult>, }

impl LoadTestResult { pub fn print_summary(&self) { println!("Load Test: {}", self.name); println!(" Total requests: {}", self.total_requests); println!(" Successful: {}", self.successful_requests); println!(" Failed: {}", self.failed_requests); println!(" Success rate: {:.2}%", (self.successful_requests as f64 / self.total_requests as f64) * 100.0); println!(" Total duration: {:?}", self.total_duration); println!(" Average response time: {:?}", self.avg_response_time); println!(" Min response time: {:?}", self.min_response_time); println!(" Max response time: {:?}", self.max_response_time); println!(" Throughput: {:.2} req/sec", self.total_requests as f64 / self.total_duration.as_secs_f64()); } }

💾 Memory Optimization

Memory Management

[memory_optimization]
allocation_optimization: true
memory_pools: true
garbage_collection: true

[memory_implementation] use std::alloc::{alloc, dealloc, Layout}; use std::ptr;

// Memory pool pub struct MemoryPool { block_size: usize, block_count: usize, free_blocks: Vec<*mut u8>, allocated_blocks: std::collections::HashSet<*mut u8>, layout: Layout, }

impl MemoryPool { pub fn new(block_size: usize, block_count: usize) -> Result<Self, std::alloc::AllocError> { let layout = Layout::from_size_align(block_size, std::mem::align_of::<usize>())?; let mut pool = Self { block_size, block_count, free_blocks: Vec::new(), allocated_blocks: std::collections::HashSet::new(), layout, }; // Pre-allocate blocks for _ in 0..block_count { let block = unsafe { alloc(layout) }; if block.is_null() { return Err(std::alloc::AllocError); } pool.free_blocks.push(block); } Ok(pool) } pub fn allocate(&mut self) -> Option<*mut u8> { if let Some(block) = self.free_blocks.pop() { self.allocated_blocks.insert(block); Some(block) } else { None } } pub fn deallocate(&mut self, block: *mut u8) { if self.allocated_blocks.remove(&block) { self.free_blocks.push(block); } } pub fn available_blocks(&self) -> usize { self.free_blocks.len() } pub fn allocated_blocks(&self) -> usize { self.allocated_blocks.len() } }

impl Drop for MemoryPool { fn drop(&mut self) { // Deallocate all blocks for block in self.free_blocks.drain(..) { unsafe { dealloc(block, self.layout); } } for block in self.allocated_blocks.drain() { unsafe { dealloc(block, self.layout); } } } }

// Arena allocator pub struct Arena { chunks: Vec<Vec<u8>>, current_chunk: usize, current_offset: usize, chunk_size: usize, }

impl Arena { pub fn new(chunk_size: usize) -> Self { Self { chunks: vec![Vec::with_capacity(chunk_size)], current_chunk: 0, current_offset: 0, chunk_size, } } pub fn allocate<T>(&mut self, value: T) -> &mut T { let size = std::mem::size_of::<T>(); let align = std::mem::align_of::<T>(); // Ensure alignment let aligned_offset = (self.current_offset + align - 1) & !(align - 1); // Check if we need a new chunk if aligned_offset + size > self.chunks[self.current_chunk].capacity() { self.current_chunk += 1; self.current_offset = 0; if self.current_chunk >= self.chunks.len() { self.chunks.push(Vec::with_capacity(self.chunk_size)); } } // Allocate in current chunk let chunk = &mut self.chunks[self.current_chunk]; chunk.resize(aligned_offset + size, 0); let ptr = &mut chunk[aligned_offset] as mut u8 as mut T; unsafe { ptr.write(value); &mut *ptr } } pub fn clear(&mut self) { self.chunks.clear(); self.chunks.push(Vec::with_capacity(self.chunk_size)); self.current_chunk = 0; self.current_offset = 0; } pub fn memory_usage(&self) -> usize { self.chunks.iter().map(|chunk| chunk.capacity()).sum() } }

// Smart pointer optimization pub struct OptimizedVec<T> { data: Vec<T>, capacity_hint: usize, }

impl<T> OptimizedVec<T> { pub fn new() -> Self { Self { data: Vec::new(), capacity_hint: 0, } } pub fn with_capacity(capacity: usize) -> Self { Self { data: Vec::with_capacity(capacity), capacity_hint: capacity, } } pub fn push(&mut self, item: T) { // Use capacity hint to avoid frequent reallocations if self.data.len() == self.data.capacity() && self.capacity_hint > 0 { let new_capacity = (self.data.capacity() * 2).max(self.capacity_hint); self.data.reserve(new_capacity - self.data.capacity()); } self.data.push(item); } pub fn shrink_to_fit(&mut self) { self.data.shrink_to_fit(); } pub fn clear(&mut self) { self.data.clear(); } pub fn len(&self) -> usize { self.data.len() } pub fn capacity(&self) -> usize { self.data.capacity() } pub fn is_empty(&self) -> bool { self.data.is_empty() } }

impl<T> std::ops::Deref for OptimizedVec<T> { type Target = [T]; fn deref(&self) -> &Self::Target { &self.data } }

impl<T> std::ops::DerefMut for OptimizedVec<T> { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.data } }

Cache Optimization

[cache_optimization]
cache_alignment: true
cache_friendly_data: true
prefetching: true

[cache_implementation] use std::collections::HashMap;

// Cache-friendly data structure #[repr(C)] pub struct CacheFriendlyStruct { pub id: u64, pub value: f64, pub timestamp: u64, pub flags: u32, // Padding to ensure cache line alignment _padding: [u8; 32], }

impl CacheFriendlyStruct { pub fn new(id: u64, value: f64) -> Self { Self { id, value, timestamp: std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap() .as_secs(), flags: 0, _padding: [0; 32], } } }

// Cache-aligned vector pub struct CacheAlignedVec<T> { data: Vec<T>, cache_line_size: usize, }

impl<T> CacheAlignedVec<T> { pub fn new() -> Self { Self { data: Vec::new(), cache_line_size: 64, // Typical cache line size } } pub fn with_capacity(capacity: usize) -> Self { Self { data: Vec::with_capacity(capacity), cache_line_size: 64, } } pub fn push(&mut self, item: T) { self.data.push(item); } pub fn iter(&self) -> std::slice::Iter<T> { self.data.iter() } pub fn iter_mut(&mut self) -> std::slice::IterMut<T> { self.data.iter_mut() } pub fn len(&self) -> usize { self.data.len() } pub fn is_empty(&self) -> bool { self.data.is_empty() } }

// LRU Cache pub struct LRUCache<K, V> { capacity: usize, cache: HashMap<K, (V, usize)>, // (value, access_time) access_counter: usize, }

impl<K, V> LRUCache<K, V> where K: std::hash::Hash + Eq + Clone, { pub fn new(capacity: usize) -> Self { Self { capacity, cache: HashMap::new(), access_counter: 0, } } pub fn get(&mut self, key: &K) -> Option<&V> { if let Some((value, _)) = self.cache.get_mut(key) { self.access_counter += 1; self.cache.get_mut(key).unwrap().1 = self.access_counter; Some(value) } else { None } } pub fn put(&mut self, key: K, value: V) { self.access_counter += 1; if self.cache.len() >= self.capacity && !self.cache.contains_key(&key) { // Remove least recently used item let lru_key = self.cache .iter() .min_by_key(|(_, (_, access_time))| access_time) .map(|(key, _)| key.clone()) .unwrap(); self.cache.remove(&lru_key); } self.cache.insert(key, (value, self.access_counter)); } pub fn len(&self) -> usize { self.cache.len() } pub fn is_empty(&self) -> bool { self.cache.is_empty() } pub fn clear(&mut self) { self.cache.clear(); self.access_counter = 0; } }

🔄 CPU Optimization

Parallel Processing

[cpu_optimization]
parallel_processing: true
vectorization: true
cpu_affinity: true

[cpu_implementation] use rayon::prelude::*; use std::sync::atomic::{AtomicUsize, Ordering};

// Parallel processing utilities pub struct ParallelProcessor { thread_count: usize, chunk_size: usize, }

impl ParallelProcessor { pub fn new() -> Self { Self { thread_count: num_cpus::get(), chunk_size: 1000, } } pub fn thread_count(mut self, count: usize) -> Self { self.thread_count = count; self } pub fn chunk_size(mut self, size: usize) -> Self { self.chunk_size = size; self } pub fn parallel_map<T, R, F>(&self, data: Vec<T>, f: F) -> Vec<R> where T: Send + Sync, R: Send, F: Fn(T) -> R + Send + Sync, { data.into_par_iter() .map(f) .collect() } pub fn parallel_filter<T, F>(&self, data: Vec<T>, predicate: F) -> Vec<T> where T: Send + Sync, F: Fn(&T) -> bool + Send + Sync, { data.into_par_iter() .filter(predicate) .collect() } pub fn parallel_reduce<T, F>(&self, data: Vec<T>, identity: T, op: F) -> T where T: Send + Sync + Clone, F: Fn(T, T) -> T + Send + Sync, { data.into_par_iter() .reduce(|| identity.clone(), op) } pub fn parallel_sort<T>(&self, mut data: Vec<T>) -> Vec<T> where T: Send + Sync + Ord, { data.par_sort(); data } }

// SIMD operations pub struct SIMDProcessor;

impl SIMDProcessor { pub fn vector_add(a: &[f32], b: &[f32]) -> Vec<f32> { assert_eq!(a.len(), b.len()); let mut result = Vec::with_capacity(a.len()); // Use SIMD when possible if a.len() >= 4 { let chunks = a.len() / 4; for i in 0..chunks { let idx = i * 4; result.push(a[idx] + b[idx]); result.push(a[idx + 1] + b[idx + 1]); result.push(a[idx + 2] + b[idx + 2]); result.push(a[idx + 3] + b[idx + 3]); } // Handle remaining elements for i in chunks * 4..a.len() { result.push(a[i] + b[i]); } } else { // Fallback for small arrays for (a_val, b_val) in a.iter().zip(b.iter()) { result.push(a_val + b_val); } } result } pub fn vector_multiply(a: &[f32], b: &[f32]) -> Vec<f32> { assert_eq!(a.len(), b.len()); let mut result = Vec::with_capacity(a.len()); // Use SIMD when possible if a.len() >= 4 { let chunks = a.len() / 4; for i in 0..chunks { let idx = i * 4; result.push(a[idx] * b[idx]); result.push(a[idx + 1] * b[idx + 1]); result.push(a[idx + 2] * b[idx + 2]); result.push(a[idx + 3] * b[idx + 3]); } // Handle remaining elements for i in chunks * 4..a.len() { result.push(a[i] * b[i]); } } else { // Fallback for small arrays for (a_val, b_val) in a.iter().zip(b.iter()) { result.push(a_val * b_val); } } result } pub fn vector_sum(data: &[f32]) -> f32 { let mut sum = 0.0f32; // Use SIMD when possible if data.len() >= 4 { let chunks = data.len() / 4; for i in 0..chunks { let idx = i * 4; sum += data[idx] + data[idx + 1] + data[idx + 2] + data[idx + 3]; } // Handle remaining elements for i in chunks * 4..data.len() { sum += data[i]; } } else { // Fallback for small arrays for &val in data { sum += val; } } sum } }

// CPU affinity pub struct CPUAffinity;

impl CPUAffinity { pub fn set_thread_affinity(cpu_id: usize) -> Result<(), String> { #[cfg(target_os = "linux")] { use std::os::unix::thread::JoinHandleExt; let mut cpu_set = unsafe { std::mem::zeroed() }; unsafe { libc::CPU_ZERO(&mut cpu_set); libc::CPU_SET(cpu_id, &mut cpu_set); let thread_id = libc::pthread_self(); if libc::pthread_setaffinity_np(thread_id, std::mem::size_of_val(&cpu_set), &cpu_set) != 0 { return Err("Failed to set CPU affinity".to_string()); } } } #[cfg(not(target_os = "linux"))] { return Err("CPU affinity not supported on this platform".to_string()); } Ok(()) } pub fn get_optimal_cpu_count() -> usize { num_cpus::get() } pub fn get_physical_cpu_count() -> usize { num_cpus::get_physical() } }

🎯 Best Practices

1. Profiling and Measurement

- Profile before optimizing - Use appropriate benchmarking tools - Measure in production-like environments - Focus on bottlenecks identified by profiling

2. Memory Optimization

- Minimize allocations in hot paths - Use appropriate data structures - Implement memory pools for frequent allocations - Consider cache-friendly data layouts

3. CPU Optimization

- Use parallel processing for CPU-bound tasks - Leverage SIMD instructions when possible - Optimize for cache locality - Use appropriate thread counts

4. Algorithm Optimization

- Choose appropriate algorithms for data size - Use specialized data structures - Implement early termination - Consider trade-offs between time and space

5. TuskLang Integration

- Use TuskLang configuration for performance parameters - Implement performance monitoring with TuskLang - Configure optimization levels through TuskLang - Use TuskLang for performance testing

Performance optimization with TuskLang and Rust provides powerful tools for building high-performance applications with systematic measurement and optimization approaches.