🦀 Performance Optimization in TuskLang with Rust
Performance Optimization in TuskLang with Rust
⚡ Performance Foundation
Performance optimization with TuskLang and Rust provides powerful tools for building high-performance applications. This guide covers profiling, benchmarking, memory optimization, and advanced optimization techniques.
🏗️ Performance Architecture
Optimization Strategy
[performance_architecture]
profiling: true
benchmarking: true
memory_optimization: true
cpu_optimization: true[optimization_components]
criterion: "benchmarking_framework"
perf: "profiling_tools"
heim: "system_metrics"
rayon: "parallel_processing"
Performance Configuration
[performance_configuration]
profiling_enabled: true
benchmarking_enabled: true
metrics_collection: true
optimization_level: "release"[performance_implementation]
use std::time::{Duration, Instant};
use std::collections::HashMap;
use tokio::sync::RwLock;
// Performance monitor
pub struct PerformanceMonitor {
metrics: Arc<RwLock<HashMap<String, MetricData>>>,
config: PerformanceConfig,
}
#[derive(Debug, Clone)]
pub struct PerformanceConfig {
pub enable_profiling: bool,
pub enable_benchmarking: bool,
pub metrics_retention_days: u32,
pub performance_threshold_ms: u64,
}
#[derive(Debug, Clone)]
pub struct MetricData {
pub count: u64,
pub total_time: Duration,
pub min_time: Duration,
pub max_time: Duration,
pub avg_time: Duration,
pub last_updated: Instant,
}
impl PerformanceMonitor {
pub fn new(config: PerformanceConfig) -> Self {
Self {
metrics: Arc::new(RwLock::new(HashMap::new())),
config,
}
}
pub async fn record_metric(&self, name: &str, duration: Duration) {
if !self.config.enable_profiling {
return;
}
let mut metrics = self.metrics.write().await;
let metric = metrics.entry(name.to_string()).or_insert_with(|| MetricData {
count: 0,
total_time: Duration::ZERO,
min_time: Duration::MAX,
max_time: Duration::ZERO,
avg_time: Duration::ZERO,
last_updated: Instant::now(),
});
metric.count += 1;
metric.total_time += duration;
metric.min_time = metric.min_time.min(duration);
metric.max_time = metric.max_time.max(duration);
metric.avg_time = metric.total_time / metric.count;
metric.last_updated = Instant::now();
}
pub async fn get_metrics(&self) -> HashMap<String, MetricData> {
self.metrics.read().await.clone()
}
pub async fn get_metric(&self, name: &str) -> Option<MetricData> {
self.metrics.read().await.get(name).cloned()
}
pub async fn clear_metrics(&self) {
self.metrics.write().await.clear();
}
}
// Performance profiler
pub struct PerformanceProfiler {
monitor: Arc<PerformanceMonitor>,
}
impl PerformanceProfiler {
pub fn new(monitor: Arc<PerformanceMonitor>) -> Self {
Self { monitor }
}
pub async fn profile<F, T>(&self, name: &str, f: F) -> T
where
F: FnOnce() -> T,
{
let start = Instant::now();
let result = f();
let duration = start.elapsed();
self.monitor.record_metric(name, duration).await;
result
}
pub async fn profile_async<F, Fut, T>(&self, name: &str, f: F) -> T
where
F: FnOnce() -> Fut,
Fut: Future<Output = T>,
{
let start = Instant::now();
let result = f().await;
let duration = start.elapsed();
self.monitor.record_metric(name, duration).await;
result
}
}
📊 Profiling and Benchmarking
Criterion Benchmarking
[profiling_benchmarking]
criterion_benchmarks: true
custom_benchmarks: true
performance_tests: true[benchmarking_implementation]
use criterion::{black_box, criterion_group, criterion_main, Criterion};
// Benchmark functions
pub fn fibonacci_recursive(n: u64) -> u64 {
match n {
0 => 0,
1 => 1,
_ => fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2),
}
}
pub fn fibonacci_iterative(n: u64) -> u64 {
if n <= 1 {
return n;
}
let mut a = 0;
let mut b = 1;
for _ in 2..=n {
let temp = a + b;
a = b;
b = temp;
}
b
}
pub fn fibonacci_memoized(n: u64) -> u64 {
use std::collections::HashMap;
use std::sync::Mutex;
use once_cell::sync::Lazy;
static CACHE: Lazy<Mutex<HashMap<u64, u64>>> = Lazy::new(|| Mutex::new(HashMap::new()));
if n <= 1 {
return n;
}
{
let cache = CACHE.lock().unwrap();
if let Some(&result) = cache.get(&n) {
return result;
}
}
let result = fibonacci_memoized(n - 1) + fibonacci_memoized(n - 2);
{
let mut cache = CACHE.lock().unwrap();
cache.insert(n, result);
}
result
}
// Criterion benchmarks
pub fn fibonacci_benchmarks(c: &mut Criterion) {
let mut group = c.benchmark_group("fibonacci");
group.bench_function("recursive_10", |b| {
b.iter(|| fibonacci_recursive(black_box(10)))
});
group.bench_function("iterative_10", |b| {
b.iter(|| fibonacci_iterative(black_box(10)))
});
group.bench_function("memoized_10", |b| {
b.iter(|| fibonacci_memoized(black_box(10)))
});
group.bench_function("recursive_20", |b| {
b.iter(|| fibonacci_recursive(black_box(20)))
});
group.bench_function("iterative_20", |b| {
b.iter(|| fibonacci_iterative(black_box(20)))
});
group.bench_function("memoized_20", |b| {
b.iter(|| fibonacci_memoized(black_box(20)))
});
group.finish();
}
// Custom benchmarking framework
pub struct CustomBenchmark {
name: String,
iterations: usize,
warmup_iterations: usize,
}
impl CustomBenchmark {
pub fn new(name: String) -> Self {
Self {
name,
iterations: 1000,
warmup_iterations: 100,
}
}
pub fn iterations(mut self, iterations: usize) -> Self {
self.iterations = iterations;
self
}
pub fn warmup_iterations(mut self, warmup: usize) -> Self {
self.warmup_iterations = warmup;
self
}
pub fn run<F>(&self, f: F) -> BenchmarkResult
where
F: Fn() + Copy,
{
// Warmup
for _ in 0..self.warmup_iterations {
f();
}
// Actual benchmark
let mut times = Vec::with_capacity(self.iterations);
for _ in 0..self.iterations {
let start = Instant::now();
f();
times.push(start.elapsed());
}
// Calculate statistics
let total_time: Duration = times.iter().sum();
let avg_time = total_time / self.iterations as u32;
let min_time = times.iter().min().unwrap_or(&Duration::ZERO);
let max_time = times.iter().max().unwrap_or(&Duration::ZERO);
BenchmarkResult {
name: self.name.clone(),
iterations: self.iterations,
total_time,
avg_time,
min_time: *min_time,
max_time: *max_time,
times,
}
}
}
#[derive(Debug)]
pub struct BenchmarkResult {
pub name: String,
pub iterations: usize,
pub total_time: Duration,
pub avg_time: Duration,
pub min_time: Duration,
pub max_time: Duration,
pub times: Vec<Duration>,
}
impl BenchmarkResult {
pub fn print_summary(&self) {
println!("Benchmark: {}", self.name);
println!(" Iterations: {}", self.iterations);
println!(" Total time: {:?}", self.total_time);
println!(" Average time: {:?}", self.avg_time);
println!(" Min time: {:?}", self.min_time);
println!(" Max time: {:?}", self.max_time);
println!(" Throughput: {:.2} ops/sec",
self.iterations as f64 / self.total_time.as_secs_f64());
}
}
Performance Testing
[performance_testing]
load_testing: true
stress_testing: true
endurance_testing: true[testing_implementation]
use tokio::time::sleep;
// Load test framework
pub struct LoadTest {
name: String,
concurrency: usize,
duration: Duration,
requests_per_second: usize,
}
impl LoadTest {
pub fn new(name: String) -> Self {
Self {
name,
concurrency: 10,
duration: Duration::from_secs(60),
requests_per_second: 100,
}
}
pub fn concurrency(mut self, concurrency: usize) -> Self {
self.concurrency = concurrency;
self
}
pub fn duration(mut self, duration: Duration) -> Self {
self.duration = duration;
self
}
pub fn requests_per_second(mut self, rps: usize) -> Self {
self.requests_per_second = rps;
self
}
pub async fn run<F, Fut>(&self, test_function: F) -> LoadTestResult
where
F: Fn() -> Fut + Send + Sync + 'static,
Fut: Future<Output = Result<(), String>> + Send,
{
let start_time = Instant::now();
let mut results = Vec::new();
let mut handles = Vec::new();
// Spawn worker tasks
for worker_id in 0..self.concurrency {
let test_function = test_function.clone();
let worker_duration = self.duration;
let requests_per_worker = self.requests_per_second / self.concurrency;
let handle = tokio::spawn(async move {
let mut worker_results = Vec::new();
let interval = Duration::from_secs(1) / requests_per_worker as u32;
while start_time.elapsed() < worker_duration {
let request_start = Instant::now();
let result = test_function().await;
let request_duration = request_start.elapsed();
worker_results.push(WorkerResult {
worker_id,
success: result.is_ok(),
duration: request_duration,
error: result.err(),
});
sleep(interval).await;
}
worker_results
});
handles.push(handle);
}
// Collect results
for handle in handles {
let worker_results = handle.await.unwrap();
results.extend(worker_results);
}
LoadTestResult {
name: self.name.clone(),
total_requests: results.len(),
successful_requests: results.iter().filter(|r| r.success).count(),
failed_requests: results.iter().filter(|r| !r.success).count(),
total_duration: start_time.elapsed(),
avg_response_time: results.iter().map(|r| r.duration).sum::<Duration>() / results.len() as u32,
min_response_time: results.iter().map(|r| r.duration).min().unwrap_or(Duration::ZERO),
max_response_time: results.iter().map(|r| r.duration).max().unwrap_or(Duration::ZERO),
results,
}
}
}
#[derive(Debug)]
pub struct WorkerResult {
pub worker_id: usize,
pub success: bool,
pub duration: Duration,
pub error: Option<String>,
}
#[derive(Debug)]
pub struct LoadTestResult {
pub name: String,
pub total_requests: usize,
pub successful_requests: usize,
pub failed_requests: usize,
pub total_duration: Duration,
pub avg_response_time: Duration,
pub min_response_time: Duration,
pub max_response_time: Duration,
pub results: Vec<WorkerResult>,
}
impl LoadTestResult {
pub fn print_summary(&self) {
println!("Load Test: {}", self.name);
println!(" Total requests: {}", self.total_requests);
println!(" Successful: {}", self.successful_requests);
println!(" Failed: {}", self.failed_requests);
println!(" Success rate: {:.2}%",
(self.successful_requests as f64 / self.total_requests as f64) * 100.0);
println!(" Total duration: {:?}", self.total_duration);
println!(" Average response time: {:?}", self.avg_response_time);
println!(" Min response time: {:?}", self.min_response_time);
println!(" Max response time: {:?}", self.max_response_time);
println!(" Throughput: {:.2} req/sec",
self.total_requests as f64 / self.total_duration.as_secs_f64());
}
}
💾 Memory Optimization
Memory Management
[memory_optimization]
allocation_optimization: true
memory_pools: true
garbage_collection: true[memory_implementation]
use std::alloc::{alloc, dealloc, Layout};
use std::ptr;
// Memory pool
pub struct MemoryPool {
block_size: usize,
block_count: usize,
free_blocks: Vec<*mut u8>,
allocated_blocks: std::collections::HashSet<*mut u8>,
layout: Layout,
}
impl MemoryPool {
pub fn new(block_size: usize, block_count: usize) -> Result<Self, std::alloc::AllocError> {
let layout = Layout::from_size_align(block_size, std::mem::align_of::<usize>())?;
let mut pool = Self {
block_size,
block_count,
free_blocks: Vec::new(),
allocated_blocks: std::collections::HashSet::new(),
layout,
};
// Pre-allocate blocks
for _ in 0..block_count {
let block = unsafe { alloc(layout) };
if block.is_null() {
return Err(std::alloc::AllocError);
}
pool.free_blocks.push(block);
}
Ok(pool)
}
pub fn allocate(&mut self) -> Option<*mut u8> {
if let Some(block) = self.free_blocks.pop() {
self.allocated_blocks.insert(block);
Some(block)
} else {
None
}
}
pub fn deallocate(&mut self, block: *mut u8) {
if self.allocated_blocks.remove(&block) {
self.free_blocks.push(block);
}
}
pub fn available_blocks(&self) -> usize {
self.free_blocks.len()
}
pub fn allocated_blocks(&self) -> usize {
self.allocated_blocks.len()
}
}
impl Drop for MemoryPool {
fn drop(&mut self) {
// Deallocate all blocks
for block in self.free_blocks.drain(..) {
unsafe {
dealloc(block, self.layout);
}
}
for block in self.allocated_blocks.drain() {
unsafe {
dealloc(block, self.layout);
}
}
}
}
// Arena allocator
pub struct Arena {
chunks: Vec<Vec<u8>>,
current_chunk: usize,
current_offset: usize,
chunk_size: usize,
}
impl Arena {
pub fn new(chunk_size: usize) -> Self {
Self {
chunks: vec![Vec::with_capacity(chunk_size)],
current_chunk: 0,
current_offset: 0,
chunk_size,
}
}
pub fn allocate<T>(&mut self, value: T) -> &mut T {
let size = std::mem::size_of::<T>();
let align = std::mem::align_of::<T>();
// Ensure alignment
let aligned_offset = (self.current_offset + align - 1) & !(align - 1);
// Check if we need a new chunk
if aligned_offset + size > self.chunks[self.current_chunk].capacity() {
self.current_chunk += 1;
self.current_offset = 0;
if self.current_chunk >= self.chunks.len() {
self.chunks.push(Vec::with_capacity(self.chunk_size));
}
}
// Allocate in current chunk
let chunk = &mut self.chunks[self.current_chunk];
chunk.resize(aligned_offset + size, 0);
let ptr = &mut chunk[aligned_offset] as mut u8 as mut T;
unsafe {
ptr.write(value);
&mut *ptr
}
}
pub fn clear(&mut self) {
self.chunks.clear();
self.chunks.push(Vec::with_capacity(self.chunk_size));
self.current_chunk = 0;
self.current_offset = 0;
}
pub fn memory_usage(&self) -> usize {
self.chunks.iter().map(|chunk| chunk.capacity()).sum()
}
}
// Smart pointer optimization
pub struct OptimizedVec<T> {
data: Vec<T>,
capacity_hint: usize,
}
impl<T> OptimizedVec<T> {
pub fn new() -> Self {
Self {
data: Vec::new(),
capacity_hint: 0,
}
}
pub fn with_capacity(capacity: usize) -> Self {
Self {
data: Vec::with_capacity(capacity),
capacity_hint: capacity,
}
}
pub fn push(&mut self, item: T) {
// Use capacity hint to avoid frequent reallocations
if self.data.len() == self.data.capacity() && self.capacity_hint > 0 {
let new_capacity = (self.data.capacity() * 2).max(self.capacity_hint);
self.data.reserve(new_capacity - self.data.capacity());
}
self.data.push(item);
}
pub fn shrink_to_fit(&mut self) {
self.data.shrink_to_fit();
}
pub fn clear(&mut self) {
self.data.clear();
}
pub fn len(&self) -> usize {
self.data.len()
}
pub fn capacity(&self) -> usize {
self.data.capacity()
}
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
}
impl<T> std::ops::Deref for OptimizedVec<T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
&self.data
}
}
impl<T> std::ops::DerefMut for OptimizedVec<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.data
}
}
Cache Optimization
[cache_optimization]
cache_alignment: true
cache_friendly_data: true
prefetching: true[cache_implementation]
use std::collections::HashMap;
// Cache-friendly data structure
#[repr(C)]
pub struct CacheFriendlyStruct {
pub id: u64,
pub value: f64,
pub timestamp: u64,
pub flags: u32,
// Padding to ensure cache line alignment
_padding: [u8; 32],
}
impl CacheFriendlyStruct {
pub fn new(id: u64, value: f64) -> Self {
Self {
id,
value,
timestamp: std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_secs(),
flags: 0,
_padding: [0; 32],
}
}
}
// Cache-aligned vector
pub struct CacheAlignedVec<T> {
data: Vec<T>,
cache_line_size: usize,
}
impl<T> CacheAlignedVec<T> {
pub fn new() -> Self {
Self {
data: Vec::new(),
cache_line_size: 64, // Typical cache line size
}
}
pub fn with_capacity(capacity: usize) -> Self {
Self {
data: Vec::with_capacity(capacity),
cache_line_size: 64,
}
}
pub fn push(&mut self, item: T) {
self.data.push(item);
}
pub fn iter(&self) -> std::slice::Iter<T> {
self.data.iter()
}
pub fn iter_mut(&mut self) -> std::slice::IterMut<T> {
self.data.iter_mut()
}
pub fn len(&self) -> usize {
self.data.len()
}
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
}
// LRU Cache
pub struct LRUCache<K, V> {
capacity: usize,
cache: HashMap<K, (V, usize)>, // (value, access_time)
access_counter: usize,
}
impl<K, V> LRUCache<K, V>
where
K: std::hash::Hash + Eq + Clone,
{
pub fn new(capacity: usize) -> Self {
Self {
capacity,
cache: HashMap::new(),
access_counter: 0,
}
}
pub fn get(&mut self, key: &K) -> Option<&V> {
if let Some((value, _)) = self.cache.get_mut(key) {
self.access_counter += 1;
self.cache.get_mut(key).unwrap().1 = self.access_counter;
Some(value)
} else {
None
}
}
pub fn put(&mut self, key: K, value: V) {
self.access_counter += 1;
if self.cache.len() >= self.capacity && !self.cache.contains_key(&key) {
// Remove least recently used item
let lru_key = self.cache
.iter()
.min_by_key(|(_, (_, access_time))| access_time)
.map(|(key, _)| key.clone())
.unwrap();
self.cache.remove(&lru_key);
}
self.cache.insert(key, (value, self.access_counter));
}
pub fn len(&self) -> usize {
self.cache.len()
}
pub fn is_empty(&self) -> bool {
self.cache.is_empty()
}
pub fn clear(&mut self) {
self.cache.clear();
self.access_counter = 0;
}
}
🔄 CPU Optimization
Parallel Processing
[cpu_optimization]
parallel_processing: true
vectorization: true
cpu_affinity: true[cpu_implementation]
use rayon::prelude::*;
use std::sync::atomic::{AtomicUsize, Ordering};
// Parallel processing utilities
pub struct ParallelProcessor {
thread_count: usize,
chunk_size: usize,
}
impl ParallelProcessor {
pub fn new() -> Self {
Self {
thread_count: num_cpus::get(),
chunk_size: 1000,
}
}
pub fn thread_count(mut self, count: usize) -> Self {
self.thread_count = count;
self
}
pub fn chunk_size(mut self, size: usize) -> Self {
self.chunk_size = size;
self
}
pub fn parallel_map<T, R, F>(&self, data: Vec<T>, f: F) -> Vec<R>
where
T: Send + Sync,
R: Send,
F: Fn(T) -> R + Send + Sync,
{
data.into_par_iter()
.map(f)
.collect()
}
pub fn parallel_filter<T, F>(&self, data: Vec<T>, predicate: F) -> Vec<T>
where
T: Send + Sync,
F: Fn(&T) -> bool + Send + Sync,
{
data.into_par_iter()
.filter(predicate)
.collect()
}
pub fn parallel_reduce<T, F>(&self, data: Vec<T>, identity: T, op: F) -> T
where
T: Send + Sync + Clone,
F: Fn(T, T) -> T + Send + Sync,
{
data.into_par_iter()
.reduce(|| identity.clone(), op)
}
pub fn parallel_sort<T>(&self, mut data: Vec<T>) -> Vec<T>
where
T: Send + Sync + Ord,
{
data.par_sort();
data
}
}
// SIMD operations
pub struct SIMDProcessor;
impl SIMDProcessor {
pub fn vector_add(a: &[f32], b: &[f32]) -> Vec<f32> {
assert_eq!(a.len(), b.len());
let mut result = Vec::with_capacity(a.len());
// Use SIMD when possible
if a.len() >= 4 {
let chunks = a.len() / 4;
for i in 0..chunks {
let idx = i * 4;
result.push(a[idx] + b[idx]);
result.push(a[idx + 1] + b[idx + 1]);
result.push(a[idx + 2] + b[idx + 2]);
result.push(a[idx + 3] + b[idx + 3]);
}
// Handle remaining elements
for i in chunks * 4..a.len() {
result.push(a[i] + b[i]);
}
} else {
// Fallback for small arrays
for (a_val, b_val) in a.iter().zip(b.iter()) {
result.push(a_val + b_val);
}
}
result
}
pub fn vector_multiply(a: &[f32], b: &[f32]) -> Vec<f32> {
assert_eq!(a.len(), b.len());
let mut result = Vec::with_capacity(a.len());
// Use SIMD when possible
if a.len() >= 4 {
let chunks = a.len() / 4;
for i in 0..chunks {
let idx = i * 4;
result.push(a[idx] * b[idx]);
result.push(a[idx + 1] * b[idx + 1]);
result.push(a[idx + 2] * b[idx + 2]);
result.push(a[idx + 3] * b[idx + 3]);
}
// Handle remaining elements
for i in chunks * 4..a.len() {
result.push(a[i] * b[i]);
}
} else {
// Fallback for small arrays
for (a_val, b_val) in a.iter().zip(b.iter()) {
result.push(a_val * b_val);
}
}
result
}
pub fn vector_sum(data: &[f32]) -> f32 {
let mut sum = 0.0f32;
// Use SIMD when possible
if data.len() >= 4 {
let chunks = data.len() / 4;
for i in 0..chunks {
let idx = i * 4;
sum += data[idx] + data[idx + 1] + data[idx + 2] + data[idx + 3];
}
// Handle remaining elements
for i in chunks * 4..data.len() {
sum += data[i];
}
} else {
// Fallback for small arrays
for &val in data {
sum += val;
}
}
sum
}
}
// CPU affinity
pub struct CPUAffinity;
impl CPUAffinity {
pub fn set_thread_affinity(cpu_id: usize) -> Result<(), String> {
#[cfg(target_os = "linux")]
{
use std::os::unix::thread::JoinHandleExt;
let mut cpu_set = unsafe { std::mem::zeroed() };
unsafe {
libc::CPU_ZERO(&mut cpu_set);
libc::CPU_SET(cpu_id, &mut cpu_set);
let thread_id = libc::pthread_self();
if libc::pthread_setaffinity_np(thread_id, std::mem::size_of_val(&cpu_set), &cpu_set) != 0 {
return Err("Failed to set CPU affinity".to_string());
}
}
}
#[cfg(not(target_os = "linux"))]
{
return Err("CPU affinity not supported on this platform".to_string());
}
Ok(())
}
pub fn get_optimal_cpu_count() -> usize {
num_cpus::get()
}
pub fn get_physical_cpu_count() -> usize {
num_cpus::get_physical()
}
}
🎯 Best Practices
1. Profiling and Measurement
- Profile before optimizing - Use appropriate benchmarking tools - Measure in production-like environments - Focus on bottlenecks identified by profiling2. Memory Optimization
- Minimize allocations in hot paths - Use appropriate data structures - Implement memory pools for frequent allocations - Consider cache-friendly data layouts3. CPU Optimization
- Use parallel processing for CPU-bound tasks - Leverage SIMD instructions when possible - Optimize for cache locality - Use appropriate thread counts4. Algorithm Optimization
- Choose appropriate algorithms for data size - Use specialized data structures - Implement early termination - Consider trade-offs between time and space5. TuskLang Integration
- Use TuskLang configuration for performance parameters - Implement performance monitoring with TuskLang - Configure optimization levels through TuskLang - Use TuskLang for performance testingPerformance optimization with TuskLang and Rust provides powerful tools for building high-performance applications with systematic measurement and optimization approaches.