🦀 Database Optimization in TuskLang with Rust

Rust Documentation

Database Optimization in TuskLang with Rust

🗄️ Database Optimization Foundation

Database optimization with TuskLang and Rust provides powerful tools for building high-performance database applications. This guide covers connection pooling, query optimization, caching strategies, and advanced database techniques.

🏗️ Database Architecture

Database Stack

[database_architecture]
connection_pooling: true
query_optimization: true
caching_strategies: true
transaction_management: true

[database_components] sqlx: "async_sql" diesel: "orm_framework" redis: "caching_layer" postgres: "primary_database"

Database Configuration

[database_configuration]
connection_pool_size: 20
max_connections: 100
query_timeout: 30
enable_caching: true

[database_implementation] use sqlx::{Pool, Postgres, postgres::PgPoolOptions}; use std::collections::HashMap; use tokio::sync::RwLock; use std::time::{Duration, Instant};

// Database manager pub struct DatabaseManager { pool: Pool<Postgres>, config: DatabaseConfig, metrics: Arc<RwLock<DatabaseMetrics>>, query_cache: Arc<RwLock<HashMap<String, CachedQuery>>>, }

#[derive(Debug, Clone)] pub struct DatabaseConfig { pub connection_string: String, pub max_connections: u32, pub min_connections: u32, pub connection_timeout: Duration, pub query_timeout: Duration, pub enable_query_cache: bool, pub cache_ttl: Duration, pub enable_metrics: bool, }

#[derive(Debug, Clone)] pub struct DatabaseMetrics { pub total_queries: u64, pub successful_queries: u64, pub failed_queries: u64, pub avg_query_time: Duration, pub cache_hits: u64, pub cache_misses: u64, pub active_connections: u32, pub idle_connections: u32, }

#[derive(Debug, Clone)] pub struct CachedQuery { pub result: String, pub created_at: Instant, pub ttl: Duration, }

impl DatabaseManager { pub async fn new(config: DatabaseConfig) -> Result<Self, sqlx::Error> { let pool = PgPoolOptions::new() .max_connections(config.max_connections) .min_connections(config.min_connections) .connect_timeout(config.connection_timeout) .acquire_timeout(config.connection_timeout) .idle_timeout(config.connection_timeout) .max_lifetime(config.connection_timeout * 2) .connect(&config.connection_string) .await?; Ok(Self { pool, config, metrics: Arc::new(RwLock::new(DatabaseMetrics { total_queries: 0, successful_queries: 0, failed_queries: 0, avg_query_time: Duration::ZERO, cache_hits: 0, cache_misses: 0, active_connections: 0, idle_connections: 0, })), query_cache: Arc::new(RwLock::new(HashMap::new())), }) } pub async fn execute_query(&self, query: &str, params: &[&(dyn sqlx::Encode<'_, Postgres> + Send + Sync)]) -> Result<sqlx::postgres::PgRow, DatabaseError> { let start_time = Instant::now(); // Check cache first if self.config.enable_query_cache { let cache_key = self.generate_cache_key(query, params); if let Some(cached_result) = self.get_cached_query(&cache_key).await { self.record_cache_hit().await; return Ok(cached_result); } } // Execute query let result = sqlx::query(query) .bind_all(params) .fetch_one(&self.pool) .await; let query_time = start_time.elapsed(); self.record_query_metrics(result.is_ok(), query_time).await; match result { Ok(row) => { // Cache result if enabled if self.config.enable_query_cache { let cache_key = self.generate_cache_key(query, params); self.cache_query(&cache_key, &row).await; } Ok(row) } Err(e) => Err(DatabaseError::QueryFailed { message: e.to_string() }), } } pub async fn execute_transaction<F, T>(&self, f: F) -> Result<T, DatabaseError> where F: for<'a> FnOnce(&'a mut sqlx::Transaction<'a, Postgres>) -> std::pin::Pin<Box<dyn std::future::Future<Output = Result<T, DatabaseError>> + Send + 'a>>, { let mut transaction = self.pool.begin().await .map_err(|e| DatabaseError::TransactionFailed { message: e.to_string() })?; let result = f(&mut transaction).await; match result { Ok(value) => { transaction.commit().await .map_err(|e| DatabaseError::TransactionFailed { message: e.to_string() })?; Ok(value) } Err(e) => { transaction.rollback().await .map_err(|_| DatabaseError::TransactionFailed { message: "Rollback failed".to_string() })?; Err(e) } } } async fn generate_cache_key(&self, query: &str, params: &[&(dyn sqlx::Encode<'_, Postgres> + Send + Sync)]) -> String { // Simple cache key generation - in production, use a proper hash format!("{}:{}", query, params.len()) } async fn get_cached_query(&self, cache_key: &str) -> Option<sqlx::postgres::PgRow> { let cache = self.query_cache.read().await; if let Some(cached) = cache.get(cache_key) { if cached.created_at.elapsed() < cached.ttl { return Some(cached.result.clone()); } } None } async fn cache_query(&self, cache_key: &str, result: &sqlx::postgres::PgRow) { let mut cache = self.query_cache.write().await; cache.insert(cache_key.to_string(), CachedQuery { result: result.to_string(), created_at: Instant::now(), ttl: self.config.cache_ttl, }); } async fn record_cache_hit(&self) { let mut metrics = self.metrics.write().await; metrics.cache_hits += 1; } async fn record_query_metrics(&self, success: bool, query_time: Duration) { let mut metrics = self.metrics.write().await; metrics.total_queries += 1; if success { metrics.successful_queries += 1; } else { metrics.failed_queries += 1; } // Update average query time let total_time = metrics.avg_query_time * (metrics.total_queries - 1) + query_time; metrics.avg_query_time = total_time / metrics.total_queries; } pub async fn get_metrics(&self) -> DatabaseMetrics { self.metrics.read().await.clone() } pub async fn clear_cache(&self) { self.query_cache.write().await.clear(); } }

#[derive(Debug, thiserror::Error)] pub enum DatabaseError { #[error("Query failed: {message}")] QueryFailed { message: String }, #[error("Transaction failed: {message}")] TransactionFailed { message: String }, #[error("Connection failed: {message}")] ConnectionFailed { message: String }, #[error("Cache error: {message}")] CacheError { message: String }, }

🔗 Connection Pooling

Advanced Connection Pool

[connection_pooling]
pool_management: true
connection_monitoring: true
load_balancing: true

[pool_implementation] use std::sync::atomic::{AtomicU32, Ordering}; use tokio::time::interval;

// Advanced connection pool pub struct AdvancedConnectionPool { pools: Vec<Pool<Postgres>>, current_pool: AtomicU32, config: PoolConfig, health_checker: Arc<RwLock<HealthChecker>>, }

#[derive(Debug, Clone)] pub struct PoolConfig { pub primary_connection_string: String, pub replica_connection_strings: Vec<String>, pub max_connections_per_pool: u32, pub min_connections_per_pool: u32, pub connection_timeout: Duration, pub health_check_interval: Duration, pub load_balancing_strategy: LoadBalancingStrategy, }

#[derive(Debug, Clone)] pub enum LoadBalancingStrategy { RoundRobin, LeastConnections, Weighted, }

pub struct HealthChecker { pool_health: HashMap<usize, bool>, last_check: HashMap<usize, Instant>, }

impl AdvancedConnectionPool { pub async fn new(config: PoolConfig) -> Result<Self, sqlx::Error> { let mut pools = Vec::new(); // Create primary pool let primary_pool = PgPoolOptions::new() .max_connections(config.max_connections_per_pool) .min_connections(config.min_connections_per_pool) .connect_timeout(config.connection_timeout) .connect(&config.primary_connection_string) .await?; pools.push(primary_pool); // Create replica pools for connection_string in &config.replica_connection_strings { let pool = PgPoolOptions::new() .max_connections(config.max_connections_per_pool) .min_connections(config.min_connections_per_pool) .connect_timeout(config.connection_timeout) .connect(connection_string) .await?; pools.push(pool); } let health_checker = Arc::new(RwLock::new(HealthChecker { pool_health: HashMap::new(), last_check: HashMap::new(), })); let pool = Self { pools, current_pool: AtomicU32::new(0), config, health_checker: Arc::clone(&health_checker), }; // Start health checking pool.start_health_checker().await; Ok(pool) } pub async fn get_connection(&self) -> Result<Pool<Postgres>, DatabaseError> { match self.config.load_balancing_strategy { LoadBalancingStrategy::RoundRobin => self.get_round_robin_connection().await, LoadBalancingStrategy::LeastConnections => self.get_least_connections_pool().await, LoadBalancingStrategy::Weighted => self.get_weighted_connection().await, } } async fn get_round_robin_connection(&self) -> Result<Pool<Postgres>, DatabaseError> { let mut attempts = 0; let max_attempts = self.pools.len(); while attempts < max_attempts { let pool_index = self.current_pool.fetch_add(1, Ordering::Relaxed) as usize % self.pools.len(); if self.is_pool_healthy(pool_index).await { return Ok(self.pools[pool_index].clone()); } attempts += 1; } Err(DatabaseError::ConnectionFailed { message: "No healthy pools available".to_string() }) } async fn get_least_connections_pool(&self) -> Result<Pool<Postgres>, DatabaseError> { let mut best_pool = None; let mut min_connections = u32::MAX; for (index, pool) in self.pools.iter().enumerate() { if self.is_pool_healthy(index).await { let size = pool.size(); if size < min_connections { min_connections = size; best_pool = Some(pool.clone()); } } } best_pool.ok_or_else(|| DatabaseError::ConnectionFailed { message: "No healthy pools available".to_string() }) } async fn get_weighted_connection(&self) -> Result<Pool<Postgres>, DatabaseError> { // Simple weighted strategy - primary gets higher weight if self.is_pool_healthy(0).await { return Ok(self.pools[0].clone()); } // Fallback to round-robin for replicas for index in 1..self.pools.len() { if self.is_pool_healthy(index).await { return Ok(self.pools[index].clone()); } } Err(DatabaseError::ConnectionFailed { message: "No healthy pools available".to_string() }) } async fn is_pool_healthy(&self, pool_index: usize) -> bool { let health_checker = self.health_checker.read().await; health_checker.pool_health.get(&pool_index).copied().unwrap_or(false) } async fn start_health_checker(&self) { let health_checker = Arc::clone(&self.health_checker); let pools = self.pools.clone(); let interval_duration = self.config.health_check_interval; tokio::spawn(async move { let mut interval = interval(interval_duration); loop { interval.tick().await; let mut checker = health_checker.write().await; let now = Instant::now(); for (index, pool) in pools.iter().enumerate() { // Check if we need to perform health check let last_check = checker.last_check.get(&index).copied().unwrap_or(Instant::now() - interval_duration); if now.duration_since(last_check) >= interval_duration { let is_healthy = Self::check_pool_health(pool).await; checker.pool_health.insert(index, is_healthy); checker.last_check.insert(index, now); } } } }); } async fn check_pool_health(pool: &Pool<Postgres>) -> bool { match sqlx::query("SELECT 1").fetch_one(pool).await { Ok(_) => true, Err(_) => false, } } }

🔍 Query Optimization

Query Optimizer

[query_optimization]
query_analysis: true
index_optimization: true
query_rewriting: true

[optimization_implementation] use std::collections::HashMap;

// Query optimizer pub struct QueryOptimizer { query_stats: Arc<RwLock<HashMap<String, QueryStats>>>, index_recommendations: Arc<RwLock<Vec<IndexRecommendation>>>, slow_query_threshold: Duration, }

#[derive(Debug, Clone)] pub struct QueryStats { pub query_hash: String, pub execution_count: u64, pub total_execution_time: Duration, pub avg_execution_time: Duration, pub min_execution_time: Duration, pub max_execution_time: Duration, pub last_executed: Instant, }

#[derive(Debug, Clone)] pub struct IndexRecommendation { pub table_name: String, pub column_name: String, pub index_type: IndexType, pub estimated_improvement: f64, pub reason: String, }

#[derive(Debug, Clone)] pub enum IndexType { BTree, Hash, GIN, GIST, }

impl QueryOptimizer { pub fn new(slow_query_threshold: Duration) -> Self { Self { query_stats: Arc::new(RwLock::new(HashMap::new())), index_recommendations: Arc::new(RwLock::new(Vec::new())), slow_query_threshold, } } pub async fn analyze_query(&self, query: &str, execution_time: Duration) -> QueryAnalysis { let query_hash = self.hash_query(query); // Update query statistics { let mut stats = self.query_stats.write().await; let stat = stats.entry(query_hash.clone()).or_insert_with(|| QueryStats { query_hash: query_hash.clone(), execution_count: 0, total_execution_time: Duration::ZERO, avg_execution_time: Duration::ZERO, min_execution_time: Duration::MAX, max_execution_time: Duration::ZERO, last_executed: Instant::now(), }); stat.execution_count += 1; stat.total_execution_time += execution_time; stat.avg_execution_time = stat.total_execution_time / stat.execution_count; stat.min_execution_time = stat.min_execution_time.min(execution_time); stat.max_execution_time = stat.max_execution_time.max(execution_time); stat.last_executed = Instant::now(); } // Analyze query performance let is_slow = execution_time > self.slow_query_threshold; let recommendations = if is_slow { self.generate_recommendations(query).await } else { Vec::new() }; QueryAnalysis { query_hash, execution_time, is_slow, recommendations, } } pub async fn optimize_query(&self, query: &str) -> String { let mut optimized_query = query.to_string(); // Apply query optimizations optimized_query = self.rewrite_select_star(&optimized_query); optimized_query = self.add_limit_if_missing(&optimized_query); optimized_query = self.optimize_joins(&optimized_query); optimized_query = self.optimize_where_clause(&optimized_query); optimized_query } fn hash_query(&self, query: &str) -> String { // Simple hash - in production, use a proper cryptographic hash use std::collections::hash_map::DefaultHasher; use std::hash::{Hash, Hasher}; let mut hasher = DefaultHasher::new(); query.hash(&mut hasher); format!("{:x}", hasher.finish()) } async fn generate_recommendations(&self, query: &str) -> Vec<IndexRecommendation> { let mut recommendations = Vec::new(); // Analyze WHERE clauses for potential indexes if let Some(where_clause) = self.extract_where_clause(query) { for column in self.extract_columns_from_where(&where_clause) { recommendations.push(IndexRecommendation { table_name: "unknown".to_string(), // Would need to parse table name column_name: column, index_type: IndexType::BTree, estimated_improvement: 0.8, reason: "Frequent filtering on this column".to_string(), }); } } // Analyze JOIN clauses if let Some(join_clause) = self.extract_join_clause(query) { for column in self.extract_columns_from_join(&join_clause) { recommendations.push(IndexRecommendation { table_name: "unknown".to_string(), column_name: column, index_type: IndexType::BTree, estimated_improvement: 0.9, reason: "JOIN condition on this column".to_string(), }); } } recommendations } fn rewrite_select_star(&self, query: &str) -> String { // Replace SELECT * with specific columns when possible if query.to_lowercase().contains("select *") { // This would require schema information to be truly effective query.replace("SELECT *", "SELECT id, name, created_at") } else { query.to_string() } } fn add_limit_if_missing(&self, query: &str) -> String { // Add LIMIT clause to prevent large result sets if !query.to_lowercase().contains("limit") && query.to_lowercase().contains("select") { format!("{} LIMIT 1000", query) } else { query.to_string() } } fn optimize_joins(&self, query: &str) -> String { // Optimize JOIN order (simplified) query.to_string() } fn optimize_where_clause(&self, query: &str) -> String { // Optimize WHERE clause order (simplified) query.to_string() } fn extract_where_clause(&self, query: &str) -> Option<&str> { let query_lower = query.to_lowercase(); if let Some(where_pos) = query_lower.find("where") { if let Some(order_pos) = query_lower.find("order by") { Some(&query[where_pos + 5..order_pos]) } else if let Some(limit_pos) = query_lower.find("limit") { Some(&query[where_pos + 5..limit_pos]) } else { Some(&query[where_pos + 5..]) } } else { None } } fn extract_join_clause(&self, query: &str) -> Option<&str> { let query_lower = query.to_lowercase(); if let Some(join_pos) = query_lower.find("join") { if let Some(where_pos) = query_lower.find("where") { Some(&query[join_pos..where_pos]) } else { Some(&query[join_pos..]) } } else { None } } fn extract_columns_from_where(&self, where_clause: &str) -> Vec<String> { // Simple column extraction - would need proper SQL parsing in production where_clause .split_whitespace() .filter(|word| word.contains('.') || word.chars().all(|c| c.is_alphanumeric() || c == '_')) .map(|s| s.to_string()) .collect() } fn extract_columns_from_join(&self, join_clause: &str) -> Vec<String> { // Simple column extraction for JOIN clauses join_clause .split_whitespace() .filter(|word| word.contains('.') || word.chars().all(|c| c.is_alphanumeric() || c == '_')) .map(|s| s.to_string()) .collect() } pub async fn get_slow_queries(&self) -> Vec<QueryStats> { let stats = self.query_stats.read().await; stats.values() .filter(|stat| stat.avg_execution_time > self.slow_query_threshold) .cloned() .collect() } pub async fn get_index_recommendations(&self) -> Vec<IndexRecommendation> { self.index_recommendations.read().await.clone() } }

#[derive(Debug)] pub struct QueryAnalysis { pub query_hash: String, pub execution_time: Duration, pub is_slow: bool, pub recommendations: Vec<IndexRecommendation>, }

💾 Caching Strategies

Multi-Level Caching

[caching_strategies]
l1_cache: true
l2_cache: true
distributed_cache: true

[caching_implementation] use redis::{Client, Connection, Commands}; use std::collections::HashMap;

// Multi-level cache pub struct MultiLevelCache { l1_cache: Arc<RwLock<HashMap<String, CacheEntry>>>, l2_cache: Arc<RwLock<RedisCache>>, config: CacheConfig, }

#[derive(Debug, Clone)] pub struct CacheConfig { pub l1_max_size: usize, pub l1_ttl: Duration, pub l2_ttl: Duration, pub enable_l1: bool, pub enable_l2: bool, pub redis_url: String, }

#[derive(Debug, Clone)] pub struct CacheEntry { pub value: String, pub created_at: Instant, pub ttl: Duration, pub access_count: u64, }

pub struct RedisCache { client: Client, }

impl RedisCache { pub fn new(redis_url: &str) -> Result<Self, redis::RedisError> { let client = Client::open(redis_url)?; Ok(Self { client }) } pub async fn get(&self, key: &str) -> Result<Option<String>, redis::RedisError> { let mut conn = self.client.get_async_connection().await?; let result: Option<String> = conn.get(key).await?; Ok(result) } pub async fn set(&self, key: &str, value: &str, ttl: Duration) -> Result<(), redis::RedisError> { let mut conn = self.client.get_async_connection().await?; let ttl_secs = ttl.as_secs() as usize; conn.set_ex(key, value, ttl_secs).await?; Ok(()) } pub async fn delete(&self, key: &str) -> Result<(), redis::RedisError> { let mut conn = self.client.get_async_connection().await?; conn.del(key).await?; Ok(()) } }

impl MultiLevelCache { pub async fn new(config: CacheConfig) -> Result<Self, redis::RedisError> { let l2_cache = if config.enable_l2 { Arc::new(RwLock::new(RedisCache::new(&config.redis_url)?)) } else { Arc::new(RwLock::new(RedisCache::new("redis://localhost:6379")?)) }; Ok(Self { l1_cache: Arc::new(RwLock::new(HashMap::new())), l2_cache, config, }) } pub async fn get(&self, key: &str) -> Option<String> { // Try L1 cache first if self.config.enable_l1 { if let Some(value) = self.get_from_l1(key).await { return Some(value); } } // Try L2 cache if self.config.enable_l2 { if let Some(value) = self.get_from_l2(key).await { // Store in L1 cache for future access if self.config.enable_l1 { self.store_in_l1(key, &value).await; } return Some(value); } } None } pub async fn set(&self, key: &str, value: &str) -> Result<(), CacheError> { // Store in L1 cache if self.config.enable_l1 { self.store_in_l1(key, value).await; } // Store in L2 cache if self.config.enable_l2 { self.store_in_l2(key, value).await?; } Ok(()) } pub async fn delete(&self, key: &str) -> Result<(), CacheError> { // Delete from L1 cache if self.config.enable_l1 { self.delete_from_l1(key).await; } // Delete from L2 cache if self.config.enable_l2 { self.delete_from_l2(key).await?; } Ok(()) } async fn get_from_l1(&self, key: &str) -> Option<String> { let mut cache = self.l1_cache.write().await; if let Some(entry) = cache.get_mut(key) { // Check if entry is expired if entry.created_at.elapsed() > entry.ttl { cache.remove(key); return None; } // Update access count entry.access_count += 1; // Implement LRU eviction if cache is full if cache.len() >= self.config.l1_max_size { self.evict_lru_entry(&mut cache).await; } Some(entry.value.clone()) } else { None } } async fn store_in_l1(&self, key: &str, value: &str) { let mut cache = self.l1_cache.write().await; // Evict if cache is full if cache.len() >= self.config.l1_max_size { self.evict_lru_entry(&mut cache).await; } cache.insert(key.to_string(), CacheEntry { value: value.to_string(), created_at: Instant::now(), ttl: self.config.l1_ttl, access_count: 1, }); } async fn delete_from_l1(&self, key: &str) { self.l1_cache.write().await.remove(key); } async fn get_from_l2(&self, key: &str) -> Option<String> { let l2_cache = self.l2_cache.read().await; match l2_cache.get(key).await { Ok(value) => value, Err(_) => None, } } async fn store_in_l2(&self, key: &str, value: &str) -> Result<(), CacheError> { let l2_cache = self.l2_cache.read().await; l2_cache.set(key, value, self.config.l2_ttl).await .map_err(|e| CacheError::RedisError { message: e.to_string() }) } async fn delete_from_l2(&self, key: &str) -> Result<(), CacheError> { let l2_cache = self.l2_cache.read().await; l2_cache.delete(key).await .map_err(|e| CacheError::RedisError { message: e.to_string() }) } async fn evict_lru_entry(&self, cache: &mut HashMap<String, CacheEntry>) { // Find least recently used entry let lru_key = cache.iter() .min_by_key(|(_, entry)| entry.access_count) .map(|(key, _)| key.clone()); if let Some(key) = lru_key { cache.remove(&key); } } pub async fn get_cache_stats(&self) -> CacheStats { let l1_size = self.l1_cache.read().await.len(); let l2_size = 0; // Would need to implement size tracking for Redis CacheStats { l1_size, l2_size, l1_hit_rate: 0.0, // Would need to track hits/misses l2_hit_rate: 0.0, } } }

#[derive(Debug, thiserror::Error)] pub enum CacheError { #[error("Redis error: {message}")] RedisError { message: String }, #[error("Serialization error: {message}")] SerializationError { message: String }, }

#[derive(Debug)] pub struct CacheStats { pub l1_size: usize, pub l2_size: usize, pub l1_hit_rate: f64, pub l2_hit_rate: f64, }

🎯 Best Practices

1. Connection Management

- Use connection pooling for high-throughput applications - Monitor connection health and implement automatic failover - Set appropriate connection timeouts and limits - Implement connection retry logic

2. Query Optimization

- Analyze slow queries and optimize them - Use appropriate indexes for frequently accessed columns - Implement query caching for expensive operations - Monitor query performance metrics

3. Caching Strategy

- Implement multi-level caching (L1, L2, distributed) - Use appropriate cache TTL values - Implement cache invalidation strategies - Monitor cache hit rates and performance

4. Transaction Management

- Use transactions for data consistency - Implement proper error handling and rollback - Avoid long-running transactions - Use appropriate isolation levels

5. TuskLang Integration

- Use TuskLang configuration for database parameters - Implement database monitoring with TuskLang - Configure caching strategies through TuskLang - Use TuskLang for database schema management

Database optimization with TuskLang and Rust provides powerful tools for building high-performance, scalable database applications with comprehensive monitoring and optimization capabilities.