🦀 ⚡ @ Operator Performance in Rust
⚡ @ Operator Performance in Rust
TuskLang provides high-performance @ operators in Rust with zero-cost abstractions, efficient memory management, and comprehensive performance monitoring capabilities.
Performance Characteristics
// Zero-cost abstractions for @ operators
#[derive(Debug, Clone)]
struct PerformanceMetrics {
pub execution_time: std::time::Duration,
pub memory_usage: usize,
pub cpu_usage: f64,
pub cache_hits: u64,
pub cache_misses: u64,
}// Performance monitoring trait
trait PerformanceMonitor {
fn start_timer(&mut self, operation: &str);
fn end_timer(&mut self, operation: &str) -> std::time::Duration;
fn record_memory_usage(&mut self, operation: &str, bytes: usize);
fn record_cache_hit(&mut self, key: &str);
fn record_cache_miss(&mut self, key: &str);
fn get_metrics(&self) -> PerformanceMetrics;
}
// High-performance operator implementation
struct OptimizedOperator {
cache: std::collections::HashMap<String, (Value, std::time::Instant)>,
monitor: Box<dyn PerformanceMonitor>,
}
impl OptimizedOperator {
fn new(monitor: Box<dyn PerformanceMonitor>) -> Self {
Self {
cache: std::collections::HashMap::new(),
monitor,
}
}
fn execute_with_caching<F>(&mut self, key: &str, ttl: std::time::Duration, f: F) -> Result<Value, Box<dyn std::error::Error>>
where
F: FnOnce() -> Result<Value, Box<dyn std::error::Error>>,
{
// Check cache first
if let Some((value, timestamp)) = self.cache.get(key) {
if timestamp.elapsed() < ttl {
self.monitor.record_cache_hit(key);
return Ok(value.clone());
}
}
self.monitor.record_cache_miss(key);
// Execute operation
self.monitor.start_timer(key);
let result = f()?;
let execution_time = self.monitor.end_timer(key);
// Cache result
self.cache.insert(key.to_string(), (result.clone(), std::time::Instant::now()));
// Record memory usage
let memory_usage = std::mem::size_of_val(&result);
self.monitor.record_memory_usage(key, memory_usage);
Ok(result)
}
}
Database Query Performance
// Optimized database queries
struct DatabasePerformanceOptimizer {
connection_pool: sqlx::PgPool,
query_cache: std::collections::HashMap<String, (Vec<Value>, std::time::Instant)>,
prepared_statements: std::collections::HashMap<String, sqlx::PgStatement>,
}impl DatabasePerformanceOptimizer {
async fn optimized_query(&mut self, sql: &str, params: Vec<Value>) -> Result<Vec<Value>, Box<dyn std::error::Error>> {
let start_time = std::time::Instant::now();
// Use prepared statements for repeated queries
let statement = if let Some(stmt) = self.prepared_statements.get(sql) {
stmt
} else {
let stmt = self.connection_pool.prepare(sql).await?;
self.prepared_statements.insert(sql.to_string(), stmt);
self.prepared_statements.get(sql).unwrap()
};
// Execute query
let result = statement.query_with(params).fetch_all(&self.connection_pool).await?;
let execution_time = start_time.elapsed();
// Record performance metrics
@metrics.record("database_query_time", execution_time.as_millis() as f64);
@metrics.record("database_query_count", 1.0);
Ok(result.into_iter().map(|row| row.into()).collect())
}
// Batch operations for better performance
async fn batch_insert(&self, table: &str, records: Vec<Value>) -> Result<(), Box<dyn std::error::Error>> {
if records.is_empty() {
return Ok(());
}
let batch_size = 1000;
let start_time = std::time::Instant::now();
for chunk in records.chunks(batch_size) {
let sql = self.build_batch_insert_sql(table, chunk.len())?;
let params = self.flatten_batch_params(chunk)?;
self.connection_pool.execute(&sql, ¶ms).await?;
}
let execution_time = start_time.elapsed();
@metrics.record("batch_insert_time", execution_time.as_millis() as f64);
@metrics.record("batch_insert_records", records.len() as f64);
Ok(())
}
}
Memory Management
// Efficient memory management for @ operators
struct MemoryOptimizedOperator {
arena: typed_arena::Arena<Value>,
string_pool: string_interner::StringInterner,
}impl MemoryOptimizedOperator {
fn new() -> Self {
Self {
arena: typed_arena::Arena::new(),
string_pool: string_interner::StringInterner::new(),
}
}
// Use arena allocation for temporary values
fn process_data(&self, data: &[Value]) -> Result<Vec<&Value>, Box<dyn std::error::Error>> {
let mut processed = Vec::new();
for value in data {
// Allocate in arena for better performance
let processed_value = self.arena.alloc(self.transform_value(value)?);
processed.push(processed_value);
}
Ok(processed)
}
// String interning for repeated strings
fn intern_string(&mut self, s: &str) -> string_interner::Symbol {
self.string_pool.get_or_intern(s)
}
// Memory-efficient data processing
fn process_large_dataset(&self, data: &[Value]) -> Result<Value, Box<dyn std::error::Error>> {
// Use iterators to avoid loading everything into memory
let result = data
.iter()
.filter(|v| self.should_process(v))
.map(|v| self.transform_value(v))
.collect::<Result<Vec<_>, _>>()?;
Ok(Value::Array(result))
}
}
Caching Strategies
// Multi-level caching for optimal performance
struct MultiLevelCache {
l1_cache: std::collections::HashMap<String, (Value, std::time::Instant)>, // In-memory
l2_cache: redis::Client, // Redis
l3_cache: Box<dyn CacheBackend>, // Database
}impl MultiLevelCache {
async fn get(&self, key: &str) -> Result<Option<Value>, Box<dyn std::error::Error>> {
// L1 cache (fastest)
if let Some((value, timestamp)) = self.l1_cache.get(key) {
if timestamp.elapsed() < std::time::Duration::from_secs(60) {
@metrics.increment("cache_l1_hits", 1);
return Ok(Some(value.clone()));
}
}
// L2 cache (Redis)
if let Ok(Some(value)) = self.l2_cache.get::<String>(key).await {
@metrics.increment("cache_l2_hits", 1);
return Ok(Some(serde_json::from_str(&value)?));
}
// L3 cache (Database)
if let Some(value) = self.l3_cache.get(key).await? {
@metrics.increment("cache_l3_hits", 1);
// Populate upper levels
self.l2_cache.set_ex(key, serde_json::to_string(&value)?, 3600).await?;
return Ok(Some(value));
}
@metrics.increment("cache_misses", 1);
Ok(None)
}
async fn set(&self, key: &str, value: Value, ttl: std::time::Duration) -> Result<(), Box<dyn std::error::Error>> {
// Set in all cache levels
self.l1_cache.insert(key.to_string(), (value.clone(), std::time::Instant::now()));
self.l2_cache.set_ex(key, serde_json::to_string(&value)?, ttl.as_secs() as usize).await?;
self.l3_cache.set(key, value, ttl).await?;
Ok(())
}
}
Async Performance
// High-performance async @ operators
struct AsyncPerformanceOptimizer {
runtime: tokio::runtime::Runtime,
thread_pool: tokio::task::JoinSet<Result<Value, Box<dyn std::error::Error>>>,
}impl AsyncPerformanceOptimizer {
fn new() -> Self {
Self {
runtime: tokio::runtime::Runtime::new().unwrap(),
thread_pool: tokio::task::JoinSet::new(),
}
}
// Parallel processing for better performance
async fn parallel_process(&mut self, data: Vec<Value>) -> Result<Vec<Value>, Box<dyn std::error::Error>> {
let chunk_size = (data.len() + num_cpus::get() - 1) / num_cpus::get();
for chunk in data.chunks(chunk_size) {
let chunk = chunk.to_vec();
self.thread_pool.spawn(async move {
process_chunk(chunk).await
});
}
let mut results = Vec::new();
while let Some(result) = self.thread_pool.join_next().await {
results.push(result??);
}
Ok(results.into_iter().flatten().collect())
}
// Async streaming for large datasets
async fn stream_process(&self, data: Vec<Value>) -> tokio::sync::mpsc::Receiver<Value> {
let (tx, rx) = tokio::sync::mpsc::channel(1000);
tokio::spawn(async move {
for value in data {
let processed = process_value(value).await?;
tx.send(processed).await?;
}
Ok::<(), Box<dyn std::error::Error>>(())
});
rx
}
}
async fn process_chunk(chunk: Vec<Value>) -> Result<Vec<Value>, Box<dyn std::error::Error>> {
let mut results = Vec::new();
for value in chunk {
let processed = process_value(value).await?;
results.push(processed);
}
Ok(results)
}
async fn process_value(value: Value) -> Result<Value, Box<dyn std::error::Error>> {
// Simulate async processing
tokio::time::sleep(tokio::time::Duration::from_millis(10)).await;
match value {
Value::String(s) => Ok(Value::String(s.to_uppercase())),
Value::Number(n) => Ok(Value::Number(n)),
_ => Ok(value),
}
}
Performance Monitoring
// Comprehensive performance monitoring
struct PerformanceMonitor {
metrics: std::collections::HashMap<String, f64>,
histograms: std::collections::HashMap<String, histogram::Histogram>,
traces: Vec<TraceSpan>,
}#[derive(Debug)]
struct TraceSpan {
operation: String,
start_time: std::time::Instant,
end_time: Option<std::time::Instant>,
metadata: std::collections::HashMap<String, String>,
}
impl PerformanceMonitor {
fn new() -> Self {
Self {
metrics: std::collections::HashMap::new(),
histograms: std::collections::HashMap::new(),
traces: Vec::new(),
}
}
fn start_trace(&mut self, operation: &str) -> usize {
let span = TraceSpan {
operation: operation.to_string(),
start_time: std::time::Instant::now(),
end_time: None,
metadata: std::collections::HashMap::new(),
};
self.traces.push(span);
self.traces.len() - 1
}
fn end_trace(&mut self, span_id: usize) {
if let Some(span) = self.traces.get_mut(span_id) {
span.end_time = Some(std::time::Instant::now());
if let Some(duration) = span.end_time.unwrap().checked_duration_since(span.start_time) {
self.record_histogram(&format!("{}_duration", span.operation), duration.as_millis() as f64);
}
}
}
fn record_histogram(&mut self, name: &str, value: f64) {
let histogram = self.histograms.entry(name.to_string()).or_insert_with(|| {
histogram::Histogram::new(histogram::Config::new())
.expect("Failed to create histogram")
});
histogram.record(value as u64).expect("Failed to record value");
}
fn get_performance_report(&self) -> PerformanceReport {
let mut report = PerformanceReport::new();
for (name, histogram) in &self.histograms {
report.add_metric(name, histogram.percentile(50.0).unwrap_or(0) as f64);
report.add_metric(&format!("{}_p95", name), histogram.percentile(95.0).unwrap_or(0) as f64);
report.add_metric(&format!("{}_p99", name), histogram.percentile(99.0).unwrap_or(0) as f64);
}
report
}
}
#[derive(Debug)]
struct PerformanceReport {
metrics: std::collections::HashMap<String, f64>,
}
impl PerformanceReport {
fn new() -> Self {
Self {
metrics: std::collections::HashMap::new(),
}
}
fn add_metric(&mut self, name: &str, value: f64) {
self.metrics.insert(name.to_string(), value);
}
fn print_summary(&self) {
println!("Performance Report:");
for (name, value) in &self.metrics {
println!(" {}: {:.2}", name, value);
}
}
}
Optimization Techniques
// Performance optimization techniques
struct OptimizedOperatorExecutor {
cache: MultiLevelCache,
monitor: PerformanceMonitor,
memory_pool: MemoryOptimizedOperator,
}impl OptimizedOperatorExecutor {
fn new() -> Self {
Self {
cache: MultiLevelCache::new(),
monitor: PerformanceMonitor::new(),
memory_pool: MemoryOptimizedOperator::new(),
}
}
// Optimized @ operator execution
async fn execute_optimized<F>(&mut self, operator: &str, args: Vec<Value>, f: F) -> Result<Value, Box<dyn std::error::Error>>
where
F: FnOnce(Vec<Value>) -> Result<Value, Box<dyn std::error::Error>> + Send + 'static,
{
let span_id = self.monitor.start_trace(operator);
// Check cache first
let cache_key = format!("{}:{}", operator, serde_json::to_string(&args)?);
if let Some(cached_result) = self.cache.get(&cache_key).await? {
self.monitor.end_trace(span_id);
return Ok(cached_result);
}
// Execute operation
let result = f(args)?;
// Cache result
self.cache.set(&cache_key, result.clone(), std::time::Duration::from_secs(3600)).await?;
self.monitor.end_trace(span_id);
Ok(result)
}
// Batch processing for multiple operations
async fn batch_execute(&mut self, operations: Vec<(String, Vec<Value>)>) -> Result<Vec<Value>, Box<dyn std::error::Error>> {
let mut results = Vec::new();
let mut tasks = Vec::new();
for (operator, args) in operations {
let task = self.execute_optimized(&operator, args, |args| {
// Default operation implementation
Ok(Value::String(format!("Processed: {:?}", args)))
});
tasks.push(task);
}
// Execute all tasks concurrently
for task in tasks {
results.push(task.await?);
}
Ok(results)
}
}
Benchmarking
// Performance benchmarking utilities
struct BenchmarkRunner {
iterations: u32,
warmup_iterations: u32,
}impl BenchmarkRunner {
fn new(iterations: u32, warmup_iterations: u32) -> Self {
Self {
iterations,
warmup_iterations,
}
}
fn benchmark<F>(&self, name: &str, f: F) -> BenchmarkResult
where
F: Fn() -> Result<Value, Box<dyn std::error::Error>>,
{
let mut times = Vec::new();
// Warmup
for _ in 0..self.warmup_iterations {
let _ = f();
}
// Actual benchmark
for _ in 0..self.iterations {
let start = std::time::Instant::now();
let _ = f();
times.push(start.elapsed());
}
let avg_time = times.iter().sum::<std::time::Duration>() / times.len() as u32;
let min_time = times.iter().min().unwrap();
let max_time = times.iter().max().unwrap();
BenchmarkResult {
name: name.to_string(),
avg_time,
min_time: *min_time,
max_time: *max_time,
iterations: self.iterations,
}
}
}
#[derive(Debug)]
struct BenchmarkResult {
name: String,
avg_time: std::time::Duration,
min_time: std::time::Duration,
max_time: std::time::Duration,
iterations: u32,
}
impl BenchmarkResult {
fn print(&self) {
println!("Benchmark: {}", self.name);
println!(" Iterations: {}", self.iterations);
println!(" Average: {:?}", self.avg_time);
println!(" Min: {:?}", self.min_time);
println!(" Max: {:?}", self.max_time);
}
}
// Usage
fn run_performance_benchmarks() {
let runner = BenchmarkRunner::new(1000, 100);
let result = runner.benchmark("database_query", || {
@query("SELECT * FROM users LIMIT 1", vec![])
});
result.print();
}
Best Practices
1. Use Appropriate Data Structures
// Use efficient data structures for different use cases
fn optimize_data_structures() {
// For frequent lookups
let mut user_cache: std::collections::HashMap<u32, User> = std::collections::HashMap::new();
// For ordered data
let mut sorted_data: std::collections::BTreeMap<String, Value> = std::collections::BTreeMap::new();
// For unique values
let mut unique_values: std::collections::HashSet<String> = std::collections::HashSet::new();
// For priority queues
let mut priority_queue: std::collections::BinaryHeap<i32> = std::collections::BinaryHeap::new();
}
2. Minimize Allocations
// Avoid unnecessary allocations
fn minimize_allocations() {
// Use references instead of cloning
let data = vec![1, 2, 3, 4, 5];
let filtered: Vec<&i32> = data.iter().filter(|&&x| x > 2).collect();
// Reuse buffers
let mut buffer = Vec::with_capacity(1000);
for i in 0..1000 {
buffer.push(i);
if buffer.len() >= 1000 {
process_buffer(&buffer);
buffer.clear(); // Reuse the same buffer
}
}
}
3. Use Async Appropriately
// Use async for I/O operations, sync for CPU-bound tasks
async fn optimized_processing() -> Result<Value, Box<dyn std::error::Error>> {
// I/O operations - use async
let data = @fetch_data().await?;
// CPU-bound processing - use sync
let processed = tokio::task::spawn_blocking(move || {
cpu_intensive_processing(data)
}).await?;
// More I/O - use async
@save_result(processed).await?;
Ok(processed)
}
4. Profile and Monitor
// Continuous performance monitoring
fn setup_performance_monitoring() {
// Set up metrics collection
@metrics.gauge("memory_usage", @get_memory_usage());
@metrics.gauge("cpu_usage", @get_cpu_usage());
@metrics.counter("operations_per_second", @get_ops_per_second());
// Set up alerts
if @memory_usage > 80.0 {
@alert.send("High memory usage detected");
}
if @cpu_usage > 90.0 {
@alert.send("High CPU usage detected");
}
}
The @ operator performance optimization in Rust provides high-performance execution with comprehensive monitoring and optimization techniques.