🦀 ⚡ @ Operator Performance in Rust

Rust Documentation

⚡ @ Operator Performance in Rust

TuskLang provides high-performance @ operators in Rust with zero-cost abstractions, efficient memory management, and comprehensive performance monitoring capabilities.

Performance Characteristics

// Zero-cost abstractions for @ operators
#[derive(Debug, Clone)]
struct PerformanceMetrics {
    pub execution_time: std::time::Duration,
    pub memory_usage: usize,
    pub cpu_usage: f64,
    pub cache_hits: u64,
    pub cache_misses: u64,
}

// Performance monitoring trait trait PerformanceMonitor { fn start_timer(&mut self, operation: &str); fn end_timer(&mut self, operation: &str) -> std::time::Duration; fn record_memory_usage(&mut self, operation: &str, bytes: usize); fn record_cache_hit(&mut self, key: &str); fn record_cache_miss(&mut self, key: &str); fn get_metrics(&self) -> PerformanceMetrics; }

// High-performance operator implementation struct OptimizedOperator { cache: std::collections::HashMap<String, (Value, std::time::Instant)>, monitor: Box<dyn PerformanceMonitor>, }

impl OptimizedOperator { fn new(monitor: Box<dyn PerformanceMonitor>) -> Self { Self { cache: std::collections::HashMap::new(), monitor, } } fn execute_with_caching<F>(&mut self, key: &str, ttl: std::time::Duration, f: F) -> Result<Value, Box<dyn std::error::Error>> where F: FnOnce() -> Result<Value, Box<dyn std::error::Error>>, { // Check cache first if let Some((value, timestamp)) = self.cache.get(key) { if timestamp.elapsed() < ttl { self.monitor.record_cache_hit(key); return Ok(value.clone()); } } self.monitor.record_cache_miss(key); // Execute operation self.monitor.start_timer(key); let result = f()?; let execution_time = self.monitor.end_timer(key); // Cache result self.cache.insert(key.to_string(), (result.clone(), std::time::Instant::now())); // Record memory usage let memory_usage = std::mem::size_of_val(&result); self.monitor.record_memory_usage(key, memory_usage); Ok(result) } }

Database Query Performance

// Optimized database queries
struct DatabasePerformanceOptimizer {
    connection_pool: sqlx::PgPool,
    query_cache: std::collections::HashMap<String, (Vec<Value>, std::time::Instant)>,
    prepared_statements: std::collections::HashMap<String, sqlx::PgStatement>,
}

impl DatabasePerformanceOptimizer { async fn optimized_query(&mut self, sql: &str, params: Vec<Value>) -> Result<Vec<Value>, Box<dyn std::error::Error>> { let start_time = std::time::Instant::now(); // Use prepared statements for repeated queries let statement = if let Some(stmt) = self.prepared_statements.get(sql) { stmt } else { let stmt = self.connection_pool.prepare(sql).await?; self.prepared_statements.insert(sql.to_string(), stmt); self.prepared_statements.get(sql).unwrap() }; // Execute query let result = statement.query_with(params).fetch_all(&self.connection_pool).await?; let execution_time = start_time.elapsed(); // Record performance metrics @metrics.record("database_query_time", execution_time.as_millis() as f64); @metrics.record("database_query_count", 1.0); Ok(result.into_iter().map(|row| row.into()).collect()) } // Batch operations for better performance async fn batch_insert(&self, table: &str, records: Vec<Value>) -> Result<(), Box<dyn std::error::Error>> { if records.is_empty() { return Ok(()); } let batch_size = 1000; let start_time = std::time::Instant::now(); for chunk in records.chunks(batch_size) { let sql = self.build_batch_insert_sql(table, chunk.len())?; let params = self.flatten_batch_params(chunk)?; self.connection_pool.execute(&sql, &params).await?; } let execution_time = start_time.elapsed(); @metrics.record("batch_insert_time", execution_time.as_millis() as f64); @metrics.record("batch_insert_records", records.len() as f64); Ok(()) } }

Memory Management

// Efficient memory management for @ operators
struct MemoryOptimizedOperator {
    arena: typed_arena::Arena<Value>,
    string_pool: string_interner::StringInterner,
}

impl MemoryOptimizedOperator { fn new() -> Self { Self { arena: typed_arena::Arena::new(), string_pool: string_interner::StringInterner::new(), } } // Use arena allocation for temporary values fn process_data(&self, data: &[Value]) -> Result<Vec<&Value>, Box<dyn std::error::Error>> { let mut processed = Vec::new(); for value in data { // Allocate in arena for better performance let processed_value = self.arena.alloc(self.transform_value(value)?); processed.push(processed_value); } Ok(processed) } // String interning for repeated strings fn intern_string(&mut self, s: &str) -> string_interner::Symbol { self.string_pool.get_or_intern(s) } // Memory-efficient data processing fn process_large_dataset(&self, data: &[Value]) -> Result<Value, Box<dyn std::error::Error>> { // Use iterators to avoid loading everything into memory let result = data .iter() .filter(|v| self.should_process(v)) .map(|v| self.transform_value(v)) .collect::<Result<Vec<_>, _>>()?; Ok(Value::Array(result)) } }

Caching Strategies

// Multi-level caching for optimal performance
struct MultiLevelCache {
    l1_cache: std::collections::HashMap<String, (Value, std::time::Instant)>, // In-memory
    l2_cache: redis::Client, // Redis
    l3_cache: Box<dyn CacheBackend>, // Database
}

impl MultiLevelCache { async fn get(&self, key: &str) -> Result<Option<Value>, Box<dyn std::error::Error>> { // L1 cache (fastest) if let Some((value, timestamp)) = self.l1_cache.get(key) { if timestamp.elapsed() < std::time::Duration::from_secs(60) { @metrics.increment("cache_l1_hits", 1); return Ok(Some(value.clone())); } } // L2 cache (Redis) if let Ok(Some(value)) = self.l2_cache.get::<String>(key).await { @metrics.increment("cache_l2_hits", 1); return Ok(Some(serde_json::from_str(&value)?)); } // L3 cache (Database) if let Some(value) = self.l3_cache.get(key).await? { @metrics.increment("cache_l3_hits", 1); // Populate upper levels self.l2_cache.set_ex(key, serde_json::to_string(&value)?, 3600).await?; return Ok(Some(value)); } @metrics.increment("cache_misses", 1); Ok(None) } async fn set(&self, key: &str, value: Value, ttl: std::time::Duration) -> Result<(), Box<dyn std::error::Error>> { // Set in all cache levels self.l1_cache.insert(key.to_string(), (value.clone(), std::time::Instant::now())); self.l2_cache.set_ex(key, serde_json::to_string(&value)?, ttl.as_secs() as usize).await?; self.l3_cache.set(key, value, ttl).await?; Ok(()) } }

Async Performance

// High-performance async @ operators
struct AsyncPerformanceOptimizer {
    runtime: tokio::runtime::Runtime,
    thread_pool: tokio::task::JoinSet<Result<Value, Box<dyn std::error::Error>>>,
}

impl AsyncPerformanceOptimizer { fn new() -> Self { Self { runtime: tokio::runtime::Runtime::new().unwrap(), thread_pool: tokio::task::JoinSet::new(), } } // Parallel processing for better performance async fn parallel_process(&mut self, data: Vec<Value>) -> Result<Vec<Value>, Box<dyn std::error::Error>> { let chunk_size = (data.len() + num_cpus::get() - 1) / num_cpus::get(); for chunk in data.chunks(chunk_size) { let chunk = chunk.to_vec(); self.thread_pool.spawn(async move { process_chunk(chunk).await }); } let mut results = Vec::new(); while let Some(result) = self.thread_pool.join_next().await { results.push(result??); } Ok(results.into_iter().flatten().collect()) } // Async streaming for large datasets async fn stream_process(&self, data: Vec<Value>) -> tokio::sync::mpsc::Receiver<Value> { let (tx, rx) = tokio::sync::mpsc::channel(1000); tokio::spawn(async move { for value in data { let processed = process_value(value).await?; tx.send(processed).await?; } Ok::<(), Box<dyn std::error::Error>>(()) }); rx } }

async fn process_chunk(chunk: Vec<Value>) -> Result<Vec<Value>, Box<dyn std::error::Error>> { let mut results = Vec::new(); for value in chunk { let processed = process_value(value).await?; results.push(processed); } Ok(results) }

async fn process_value(value: Value) -> Result<Value, Box<dyn std::error::Error>> { // Simulate async processing tokio::time::sleep(tokio::time::Duration::from_millis(10)).await; match value { Value::String(s) => Ok(Value::String(s.to_uppercase())), Value::Number(n) => Ok(Value::Number(n)), _ => Ok(value), } }

Performance Monitoring

// Comprehensive performance monitoring
struct PerformanceMonitor {
    metrics: std::collections::HashMap<String, f64>,
    histograms: std::collections::HashMap<String, histogram::Histogram>,
    traces: Vec<TraceSpan>,
}

#[derive(Debug)] struct TraceSpan { operation: String, start_time: std::time::Instant, end_time: Option<std::time::Instant>, metadata: std::collections::HashMap<String, String>, }

impl PerformanceMonitor { fn new() -> Self { Self { metrics: std::collections::HashMap::new(), histograms: std::collections::HashMap::new(), traces: Vec::new(), } } fn start_trace(&mut self, operation: &str) -> usize { let span = TraceSpan { operation: operation.to_string(), start_time: std::time::Instant::now(), end_time: None, metadata: std::collections::HashMap::new(), }; self.traces.push(span); self.traces.len() - 1 } fn end_trace(&mut self, span_id: usize) { if let Some(span) = self.traces.get_mut(span_id) { span.end_time = Some(std::time::Instant::now()); if let Some(duration) = span.end_time.unwrap().checked_duration_since(span.start_time) { self.record_histogram(&format!("{}_duration", span.operation), duration.as_millis() as f64); } } } fn record_histogram(&mut self, name: &str, value: f64) { let histogram = self.histograms.entry(name.to_string()).or_insert_with(|| { histogram::Histogram::new(histogram::Config::new()) .expect("Failed to create histogram") }); histogram.record(value as u64).expect("Failed to record value"); } fn get_performance_report(&self) -> PerformanceReport { let mut report = PerformanceReport::new(); for (name, histogram) in &self.histograms { report.add_metric(name, histogram.percentile(50.0).unwrap_or(0) as f64); report.add_metric(&format!("{}_p95", name), histogram.percentile(95.0).unwrap_or(0) as f64); report.add_metric(&format!("{}_p99", name), histogram.percentile(99.0).unwrap_or(0) as f64); } report } }

#[derive(Debug)] struct PerformanceReport { metrics: std::collections::HashMap<String, f64>, }

impl PerformanceReport { fn new() -> Self { Self { metrics: std::collections::HashMap::new(), } } fn add_metric(&mut self, name: &str, value: f64) { self.metrics.insert(name.to_string(), value); } fn print_summary(&self) { println!("Performance Report:"); for (name, value) in &self.metrics { println!(" {}: {:.2}", name, value); } } }

Optimization Techniques

// Performance optimization techniques
struct OptimizedOperatorExecutor {
    cache: MultiLevelCache,
    monitor: PerformanceMonitor,
    memory_pool: MemoryOptimizedOperator,
}

impl OptimizedOperatorExecutor { fn new() -> Self { Self { cache: MultiLevelCache::new(), monitor: PerformanceMonitor::new(), memory_pool: MemoryOptimizedOperator::new(), } } // Optimized @ operator execution async fn execute_optimized<F>(&mut self, operator: &str, args: Vec<Value>, f: F) -> Result<Value, Box<dyn std::error::Error>> where F: FnOnce(Vec<Value>) -> Result<Value, Box<dyn std::error::Error>> + Send + 'static, { let span_id = self.monitor.start_trace(operator); // Check cache first let cache_key = format!("{}:{}", operator, serde_json::to_string(&args)?); if let Some(cached_result) = self.cache.get(&cache_key).await? { self.monitor.end_trace(span_id); return Ok(cached_result); } // Execute operation let result = f(args)?; // Cache result self.cache.set(&cache_key, result.clone(), std::time::Duration::from_secs(3600)).await?; self.monitor.end_trace(span_id); Ok(result) } // Batch processing for multiple operations async fn batch_execute(&mut self, operations: Vec<(String, Vec<Value>)>) -> Result<Vec<Value>, Box<dyn std::error::Error>> { let mut results = Vec::new(); let mut tasks = Vec::new(); for (operator, args) in operations { let task = self.execute_optimized(&operator, args, |args| { // Default operation implementation Ok(Value::String(format!("Processed: {:?}", args))) }); tasks.push(task); } // Execute all tasks concurrently for task in tasks { results.push(task.await?); } Ok(results) } }

Benchmarking

// Performance benchmarking utilities
struct BenchmarkRunner {
    iterations: u32,
    warmup_iterations: u32,
}

impl BenchmarkRunner { fn new(iterations: u32, warmup_iterations: u32) -> Self { Self { iterations, warmup_iterations, } } fn benchmark<F>(&self, name: &str, f: F) -> BenchmarkResult where F: Fn() -> Result<Value, Box<dyn std::error::Error>>, { let mut times = Vec::new(); // Warmup for _ in 0..self.warmup_iterations { let _ = f(); } // Actual benchmark for _ in 0..self.iterations { let start = std::time::Instant::now(); let _ = f(); times.push(start.elapsed()); } let avg_time = times.iter().sum::<std::time::Duration>() / times.len() as u32; let min_time = times.iter().min().unwrap(); let max_time = times.iter().max().unwrap(); BenchmarkResult { name: name.to_string(), avg_time, min_time: *min_time, max_time: *max_time, iterations: self.iterations, } } }

#[derive(Debug)] struct BenchmarkResult { name: String, avg_time: std::time::Duration, min_time: std::time::Duration, max_time: std::time::Duration, iterations: u32, }

impl BenchmarkResult { fn print(&self) { println!("Benchmark: {}", self.name); println!(" Iterations: {}", self.iterations); println!(" Average: {:?}", self.avg_time); println!(" Min: {:?}", self.min_time); println!(" Max: {:?}", self.max_time); } }

// Usage fn run_performance_benchmarks() { let runner = BenchmarkRunner::new(1000, 100); let result = runner.benchmark("database_query", || { @query("SELECT * FROM users LIMIT 1", vec![]) }); result.print(); }

Best Practices

1. Use Appropriate Data Structures

// Use efficient data structures for different use cases
fn optimize_data_structures() {
    // For frequent lookups
    let mut user_cache: std::collections::HashMap<u32, User> = std::collections::HashMap::new();
    
    // For ordered data
    let mut sorted_data: std::collections::BTreeMap<String, Value> = std::collections::BTreeMap::new();
    
    // For unique values
    let mut unique_values: std::collections::HashSet<String> = std::collections::HashSet::new();
    
    // For priority queues
    let mut priority_queue: std::collections::BinaryHeap<i32> = std::collections::BinaryHeap::new();
}

2. Minimize Allocations

// Avoid unnecessary allocations
fn minimize_allocations() {
    // Use references instead of cloning
    let data = vec![1, 2, 3, 4, 5];
    let filtered: Vec<&i32> = data.iter().filter(|&&x| x > 2).collect();
    
    // Reuse buffers
    let mut buffer = Vec::with_capacity(1000);
    for i in 0..1000 {
        buffer.push(i);
        if buffer.len() >= 1000 {
            process_buffer(&buffer);
            buffer.clear(); // Reuse the same buffer
        }
    }
}

3. Use Async Appropriately

// Use async for I/O operations, sync for CPU-bound tasks
async fn optimized_processing() -> Result<Value, Box<dyn std::error::Error>> {
    // I/O operations - use async
    let data = @fetch_data().await?;
    
    // CPU-bound processing - use sync
    let processed = tokio::task::spawn_blocking(move || {
        cpu_intensive_processing(data)
    }).await?;
    
    // More I/O - use async
    @save_result(processed).await?;
    
    Ok(processed)
}

4. Profile and Monitor

// Continuous performance monitoring
fn setup_performance_monitoring() {
    // Set up metrics collection
    @metrics.gauge("memory_usage", @get_memory_usage());
    @metrics.gauge("cpu_usage", @get_cpu_usage());
    @metrics.counter("operations_per_second", @get_ops_per_second());
    
    // Set up alerts
    if @memory_usage > 80.0 {
        @alert.send("High memory usage detected");
    }
    
    if @cpu_usage > 90.0 {
        @alert.send("High CPU usage detected");
    }
}

The @ operator performance optimization in Rust provides high-performance execution with comprehensive monitoring and optimization techniques.