🦀 Query Optimization in TuskLang for Rust

Rust Documentation

Query Optimization in TuskLang for Rust

TuskLang's Rust query optimization system provides type-safe, performance-focused query optimization with compile-time guarantees, async/await support, and comprehensive optimization strategies for high-performance database operations.

🚀 Why Rust Query Optimization?

Rust's type system and ownership model make it the perfect language for query optimization:

- Type Safety: Compile-time validation of optimization strategies - Performance: Zero-cost abstractions with native speed - Async/Await: Non-blocking optimization operations - Memory Safety: Automatic memory management for optimization data - Optimization Guarantees: Guaranteed performance improvements

Basic Query Optimization

use tusk_db::{QueryOptimizer, OptimizationStrategy, Result};
use serde::{Deserialize, Serialize};
use chrono::{DateTime, Utc};

#[derive(Debug, Serialize, Deserialize, Clone)] struct User { pub id: Option<i32>, pub name: String, pub email: String, pub is_active: bool, pub created_at: Option<DateTime<Utc>>, pub updated_at: Option<DateTime<Utc>>, }

#[derive(Debug, Serialize, Deserialize, Clone)] struct Post { pub id: Option<i32>, pub title: String, pub content: String, pub user_id: i32, pub published: bool, pub view_count: i32, pub created_at: Option<DateTime<Utc>>, pub updated_at: Option<DateTime<Utc>>, }

// Basic query optimization async fn optimized_user_query() -> Result<Vec<User>> { let optimizer = @QueryOptimizer::new().await?; // Optimize query with automatic analysis let optimized_query = optimizer.optimize(|query| { query.table::<User>("users") .where_eq("is_active", true) .order_by("created_at", "DESC") .limit(100) }).await?; let users = optimized_query.get().await?; Ok(users) }

// Query with explicit optimization hints async fn hinted_query_optimization() -> Result<Vec<User>> { let users = @db.table::<User>("users") .where_eq("is_active", true) .order_by("created_at", "DESC") .limit(100) .hint("USE INDEX (idx_users_active_created)") .hint("FORCE INDEX (idx_users_email)") .get() .await?; Ok(users) }

Advanced Query Optimization Strategies

use tusk_db::{OptimizationStrategy, QueryAnalyzer, PerformanceMetrics};

// Query analyzer for performance insights async fn analyze_query_performance() -> Result<()> { let analyzer = @QueryAnalyzer::new().await?; let query = @db.table::<User>("users") .where_eq("is_active", true) .where_like("email", "%@gmail.com") .order_by("created_at", "DESC"); // Analyze query performance let analysis = analyzer.analyze(&query).await?; @log::info!("Query analysis", { estimated_rows: analysis.estimated_rows, index_usage: analysis.index_usage, execution_plan: analysis.execution_plan, optimization_suggestions: analysis.suggestions, }); // Apply optimization suggestions let optimized_query = analyzer.apply_suggestions(&query, &analysis.suggestions).await?; let users = optimized_query.get().await?; Ok(()) }

// Query optimization with multiple strategies async fn multi_strategy_optimization() -> Result<Vec<User>> { let optimizer = @QueryOptimizer::new().await?; let strategies = vec![ OptimizationStrategy::IndexUsage, OptimizationStrategy::QueryRewriting, OptimizationStrategy::JoinOptimization, OptimizationStrategy::SubqueryOptimization, ]; let optimized_query = optimizer.optimize_with_strategies(|query| { query.table::<User>("users") .select(&["id", "name", "email"]) .where_eq("is_active", true) .where_in("id", |subquery| { subquery.table("posts") .select(&["user_id"]) .where_eq("published", true) .group_by("user_id") .having("COUNT(*)", ">", 5) }) .order_by("name") }, &strategies).await?; let users = optimized_query.get().await?; Ok(users) }

Index Optimization and Management

use tusk_db::{IndexOptimizer, IndexStrategy, IndexRecommendation};

// Index optimization async fn optimize_indexes() -> Result<()> { let index_optimizer = @IndexOptimizer::new().await?; // Analyze current index usage let index_analysis = index_optimizer.analyze_indexes().await?; @log::info!("Index analysis", { unused_indexes: index_analysis.unused_indexes, missing_indexes: index_analysis.missing_indexes, duplicate_indexes: index_analysis.duplicate_indexes, }); // Get index recommendations let recommendations = index_optimizer.get_recommendations().await?; for recommendation in &recommendations { @log::info!("Index recommendation", { table: &recommendation.table, columns: &recommendation.columns, type_: recommendation.index_type, reason: &recommendation.reason, }); } // Apply recommended indexes for recommendation in recommendations { if recommendation.should_apply { index_optimizer.create_index(&recommendation).await?; } } Ok(()) }

// Automatic index creation for slow queries async fn auto_index_optimization() -> Result<()> { let optimizer = @QueryOptimizer::new().await?; // Monitor slow queries and create indexes automatically optimizer.enable_auto_indexing(true).await?; optimizer.set_slow_query_threshold(100).await?; // 100ms // Run query that might be slow let users = @db.table::<User>("users") .where_eq("is_active", true) .where_like("email", "%@example.com") .order_by("created_at", "DESC") .get() .await?; // If query is slow, optimizer will suggest/create indexes Ok(users) }

// Composite index optimization async fn composite_index_optimization() -> Result<()> { let index_optimizer = @IndexOptimizer::new().await?; // Create composite index for common query patterns let composite_index = IndexRecommendation { table: "users".to_string(), columns: vec!["is_active".to_string(), "created_at".to_string()], index_type: IndexType::BTree, reason: "Optimize active user queries with date filtering".to_string(), should_apply: true, }; index_optimizer.create_index(&composite_index).await?; // Use the optimized query let users = @db.table::<User>("users") .where_eq("is_active", true) .where_gt("created_at", Utc::now() - chrono::Duration::days(30)) .order_by("created_at", "DESC") .get() .await?; Ok(users) }

Query Rewriting and Optimization

use tusk_db::{QueryRewriter, RewriteRule, QueryTransformer};

// Query rewriting for optimization async fn query_rewriting_optimization() -> Result<Vec<User>> { let rewriter = @QueryRewriter::new().await?; // Define rewrite rules let rules = vec![ RewriteRule::new("simplify_where", |query| { // Simplify complex WHERE clauses if query.has_complex_where() { query.simplify_where_clauses() } }), RewriteRule::new("optimize_joins", |query| { // Optimize JOIN order query.optimize_join_order() }), RewriteRule::new("eliminate_subqueries", |query| { // Convert subqueries to JOINs where possible query.convert_subqueries_to_joins() }), ]; let original_query = @db.table::<User>("users") .where_in("id", |subquery| { subquery.table("posts") .select(&["user_id"]) .where_eq("published", true) }) .where_eq("is_active", true); // Apply rewrite rules let optimized_query = rewriter.rewrite_with_rules(&original_query, &rules).await?; let users = optimized_query.get().await?; Ok(users) }

// Query transformation for better performance async fn query_transformation() -> Result<Vec<User>> { let transformer = @QueryTransformer::new().await?; // Transform complex query to more efficient version let complex_query = @db.table::<User>("users") .where_exists(|subquery| { subquery.table("posts") .where_raw("posts.user_id = users.id", &[]) .where_eq("published", true) }) .where_eq("is_active", true); let transformed_query = transformer.transform(&complex_query).await?; // The transformed query might use JOINs instead of EXISTS let users = transformed_query.get().await?; Ok(users) }

Join Optimization

use tusk_db::{JoinOptimizer, JoinStrategy, JoinOrder};

// Join optimization async fn join_optimization() -> Result<Vec<User>> { let join_optimizer = @JoinOptimizer::new().await?; let complex_query = @db.table::<User>("users") .join("posts", "users.id", "=", "posts.user_id") .join("comments", "posts.id", "=", "comments.post_id") .where_eq("users.is_active", true) .where_eq("posts.published", true) .select(&[ "users.*", "COUNT(posts.id) as post_count", "COUNT(comments.id) as comment_count" ]) .group_by("users.id"); // Optimize join order and strategy let optimized_query = join_optimizer.optimize(&complex_query).await?; let results = optimized_query.get().await?; Ok(results) }

// Join strategy selection async fn join_strategy_selection() -> Result<Vec<User>> { let join_optimizer = @JoinOptimizer::new().await?; // Analyze join strategies let strategies = join_optimizer.analyze_strategies(|query| { query.table::<User>("users") .join("posts", "users.id", "=", "posts.user_id") .where_eq("users.is_active", true) }).await?; // Select best strategy let best_strategy = join_optimizer.select_best_strategy(&strategies).await?; @log::info!("Selected join strategy", { strategy: best_strategy.name, estimated_cost: best_strategy.estimated_cost, reasoning: &best_strategy.reasoning, }); // Apply the strategy let optimized_query = join_optimizer.apply_strategy(&best_strategy).await?; let users = optimized_query.get().await?; Ok(users) }

Subquery Optimization

use tusk_db::{SubqueryOptimizer, SubqueryStrategy};

// Subquery optimization async fn subquery_optimization() -> Result<Vec<User>> { let subquery_optimizer = @SubqueryOptimizer::new().await?; let query_with_subquery = @db.table::<User>("users") .where_in("id", |subquery| { subquery.table("posts") .select(&["user_id"]) .where_eq("published", true) .group_by("user_id") .having("COUNT(*)", ">", 5) }) .where_eq("is_active", true); // Optimize subquery let optimized_query = subquery_optimizer.optimize(&query_with_subquery).await?; let users = optimized_query.get().await?; Ok(users) }

// Convert subqueries to JOINs async fn subquery_to_join_conversion() -> Result<Vec<User>> { let subquery_optimizer = @SubqueryOptimizer::new().await?; let query = @db.table::<User>("users") .where_exists(|subquery| { subquery.table("posts") .where_raw("posts.user_id = users.id", &[]) .where_eq("published", true) }); // Convert EXISTS subquery to JOIN let converted_query = subquery_optimizer.convert_to_join(&query).await?; let users = converted_query.get().await?; Ok(users) }

Query Caching and Result Caching

use tusk_db::{QueryCache, CacheStrategy, CacheInvalidation};

// Query caching for performance async fn query_caching_optimization() -> Result<Vec<User>> { let cache = @QueryCache::new().await?; // Configure cache strategy cache.set_strategy(CacheStrategy { ttl: 3600, // 1 hour max_size: 1000, eviction_policy: EvictionPolicy::LRU, }).await?; let query = @db.table::<User>("users") .where_eq("is_active", true) .order_by("created_at", "DESC") .limit(100); // Try to get from cache first let cache_key = query.generate_cache_key().await?; if let Some(cached_result) = cache.get(&cache_key).await? { @log::info!("Cache hit", { key: &cache_key }); return Ok(cached_result); } // Cache miss, execute query @log::info!("Cache miss", { key: &cache_key }); let users = query.get().await?; // Store in cache cache.set(&cache_key, &users).await?; Ok(users) }

// Result caching with invalidation async fn result_caching_with_invalidation() -> Result<Vec<User>> { let cache = @QueryCache::new().await?; // Set up cache invalidation rules cache.set_invalidation_rules(&[ CacheInvalidation::new("users", |event| { match event { "INSERT" | "UPDATE" | "DELETE" => true, _ => false, } }), ]).await?; let query = @db.table::<User>("users") .where_eq("is_active", true); let cache_key = query.generate_cache_key().await?; // Get from cache or execute let users = cache.get_or_execute(&cache_key, || async { query.get().await }).await?; Ok(users) }

Query Performance Monitoring

use tusk_db::{QueryMonitor, PerformanceMetrics, SlowQueryDetector};

// Query performance monitoring async fn query_performance_monitoring() -> Result<()> { let monitor = @QueryMonitor::new().await?; // Enable monitoring monitor.enable(true).await?; monitor.set_slow_query_threshold(100).await?; // 100ms // Execute query with monitoring let start = std::time::Instant::now(); let users = @db.table::<User>("users") .where_eq("is_active", true) .order_by("created_at", "DESC") .limit(100) .get() .await?; let duration = start.elapsed(); // Record metrics monitor.record_query_metrics(&QueryMetrics { sql: "SELECT * FROM users WHERE is_active = true ORDER BY created_at DESC LIMIT 100".to_string(), duration: duration.as_millis() as u64, rows_returned: users.len() as u64, timestamp: Utc::now(), }).await?; // Check for slow queries let slow_queries = monitor.get_slow_queries().await?; for slow_query in &slow_queries { @log::warn!("Slow query detected", { sql: &slow_query.sql, duration: slow_query.duration, suggestions: &slow_query.optimization_suggestions, }); } Ok(()) }

// Real-time query monitoring async fn real_time_query_monitoring() -> Result<()> { let monitor = @QueryMonitor::new().await?; // Set up real-time monitoring monitor.enable_real_time_monitoring(true).await?; // Subscribe to query events let mut query_stream = monitor.subscribe_to_queries().await?; tokio::spawn(async move { while let Some(query_event) = query_stream.recv().await { match query_event { QueryEvent::SlowQuery(query) => { @log::warn!("Real-time slow query alert", { sql: &query.sql, duration: query.duration, }); } QueryEvent::Error(query_error) => { @log::error!("Query error", { sql: &query_error.sql, error: &query_error.error, }); } _ => {} } } }); Ok(()) }

Query Optimization Best Practices

use tusk_db::{OptimizationBestPractices, QueryGuidelines};

// Best practices for query optimization async fn query_optimization_best_practices() -> Result<()> { let optimizer = @QueryOptimizer::new().await?; // 1. Use appropriate indexes let indexed_query = @db.table::<User>("users") .where_eq("is_active", true) // Uses index on is_active .where_eq("email", "test@example.com") // Uses unique index on email .get() .await?; // 2. Avoid SELECT * let selective_query = @db.table::<User>("users") .select(&["id", "name", "email"]) // Only select needed columns .where_eq("is_active", true) .get() .await?; // 3. Use LIMIT for large result sets let limited_query = @db.table::<User>("users") .where_eq("is_active", true) .order_by("created_at", "DESC") .limit(100) // Prevent large result sets .get() .await?; // 4. Optimize JOINs let optimized_join = @db.table::<User>("users") .join("posts", "users.id", "=", "posts.user_id") .where_eq("users.is_active", true) .where_eq("posts.published", true) .select(&["users.id", "users.name", "COUNT(posts.id) as post_count"]) .group_by("users.id") .get() .await?; // 5. Use appropriate data types let typed_query = @db.table::<User>("users") .where_eq("is_active", true) // Boolean comparison .where_gt("created_at", Utc::now() - chrono::Duration::days(30)) // Date comparison .get() .await?; // 6. Avoid N+1 queries with eager loading let eager_loaded_query = @db.table::<User>("users") .with(&["posts", "posts.comments"]) // Eager load relationships .where_eq("is_active", true) .get() .await?; // 7. Use query caching for frequently accessed data let cached_query = @db.table::<User>("users") .where_eq("is_active", true) .cache(3600) // Cache for 1 hour .get() .await?; Ok(()) }

Testing Query Optimization

use tusk_db::test_utils::{TestQueryOptimizer, PerformanceTest};

// Test query optimization #[tokio::test] async fn test_query_optimization() -> Result<()> { let test_db = @TestDatabase::new().await?; let optimizer = @TestQueryOptimizer::new(&test_db).await?; // Create test data let users = @UserFactory::new() .count(1000) .create() .await?; // Test unoptimized query let start = std::time::Instant::now(); let unoptimized_users = @db.table::<User>("users") .where_eq("is_active", true) .get() .await?; let unoptimized_duration = start.elapsed(); // Test optimized query let start = std::time::Instant::now(); let optimized_query = optimizer.optimize(|query| { query.table::<User>("users") .where_eq("is_active", true) }).await?; let optimized_users = optimized_query.get().await?; let optimized_duration = start.elapsed(); // Verify optimization improved performance assert!(optimized_duration < unoptimized_duration); assert_eq!(unoptimized_users.len(), optimized_users.len()); Ok(()) }

// Performance regression testing #[tokio::test] async fn test_performance_regression() -> Result<()> { let test_db = @TestDatabase::new().await?; let performance_test = @PerformanceTest::new(&test_db).await?; // Define performance baseline let baseline = performance_test.establish_baseline(|query| { query.table::<User>("users") .where_eq("is_active", true) .order_by("created_at", "DESC") .limit(100) }).await?; // Run performance test let current_performance = performance_test.measure_performance(|query| { query.table::<User>("users") .where_eq("is_active", true) .order_by("created_at", "DESC") .limit(100) }).await?; // Check for performance regression assert!(current_performance.duration <= baseline.duration * 1.1); // Allow 10% regression Ok(()) }

Best Practices for Rust Query Optimization

1. Use Strong Types: Leverage Rust's type system for query safety 2. Index Strategy: Create appropriate indexes for query patterns 3. Query Analysis: Analyze query performance regularly 4. Caching: Use query caching for frequently accessed data 5. Monitoring: Monitor query performance in production 6. Testing: Test optimization strategies thoroughly 7. Documentation: Document complex optimization logic 8. Benchmarking: Benchmark before and after optimizations 9. Incremental: Apply optimizations incrementally 10. Monitoring: Continuously monitor for performance regressions

Related Topics

- database-overview-rust - Database integration overview - query-builder-rust - Fluent query interface - orm-models-rust - Model definition and usage - migrations-rust - Database schema versioning - relationships-rust - Model relationships

---

Ready to build type-safe, high-performance query optimization with Rust and TuskLang?