🦀 Query Optimization in TuskLang for Rust
Query Optimization in TuskLang for Rust
TuskLang's Rust query optimization system provides type-safe, performance-focused query optimization with compile-time guarantees, async/await support, and comprehensive optimization strategies for high-performance database operations.
🚀 Why Rust Query Optimization?
Rust's type system and ownership model make it the perfect language for query optimization:
- Type Safety: Compile-time validation of optimization strategies - Performance: Zero-cost abstractions with native speed - Async/Await: Non-blocking optimization operations - Memory Safety: Automatic memory management for optimization data - Optimization Guarantees: Guaranteed performance improvements
Basic Query Optimization
use tusk_db::{QueryOptimizer, OptimizationStrategy, Result};
use serde::{Deserialize, Serialize};
use chrono::{DateTime, Utc};#[derive(Debug, Serialize, Deserialize, Clone)]
struct User {
pub id: Option<i32>,
pub name: String,
pub email: String,
pub is_active: bool,
pub created_at: Option<DateTime<Utc>>,
pub updated_at: Option<DateTime<Utc>>,
}
#[derive(Debug, Serialize, Deserialize, Clone)]
struct Post {
pub id: Option<i32>,
pub title: String,
pub content: String,
pub user_id: i32,
pub published: bool,
pub view_count: i32,
pub created_at: Option<DateTime<Utc>>,
pub updated_at: Option<DateTime<Utc>>,
}
// Basic query optimization
async fn optimized_user_query() -> Result<Vec<User>> {
let optimizer = @QueryOptimizer::new().await?;
// Optimize query with automatic analysis
let optimized_query = optimizer.optimize(|query| {
query.table::<User>("users")
.where_eq("is_active", true)
.order_by("created_at", "DESC")
.limit(100)
}).await?;
let users = optimized_query.get().await?;
Ok(users)
}
// Query with explicit optimization hints
async fn hinted_query_optimization() -> Result<Vec<User>> {
let users = @db.table::<User>("users")
.where_eq("is_active", true)
.order_by("created_at", "DESC")
.limit(100)
.hint("USE INDEX (idx_users_active_created)")
.hint("FORCE INDEX (idx_users_email)")
.get()
.await?;
Ok(users)
}
Advanced Query Optimization Strategies
use tusk_db::{OptimizationStrategy, QueryAnalyzer, PerformanceMetrics};// Query analyzer for performance insights
async fn analyze_query_performance() -> Result<()> {
let analyzer = @QueryAnalyzer::new().await?;
let query = @db.table::<User>("users")
.where_eq("is_active", true)
.where_like("email", "%@gmail.com")
.order_by("created_at", "DESC");
// Analyze query performance
let analysis = analyzer.analyze(&query).await?;
@log::info!("Query analysis", {
estimated_rows: analysis.estimated_rows,
index_usage: analysis.index_usage,
execution_plan: analysis.execution_plan,
optimization_suggestions: analysis.suggestions,
});
// Apply optimization suggestions
let optimized_query = analyzer.apply_suggestions(&query, &analysis.suggestions).await?;
let users = optimized_query.get().await?;
Ok(())
}
// Query optimization with multiple strategies
async fn multi_strategy_optimization() -> Result<Vec<User>> {
let optimizer = @QueryOptimizer::new().await?;
let strategies = vec![
OptimizationStrategy::IndexUsage,
OptimizationStrategy::QueryRewriting,
OptimizationStrategy::JoinOptimization,
OptimizationStrategy::SubqueryOptimization,
];
let optimized_query = optimizer.optimize_with_strategies(|query| {
query.table::<User>("users")
.select(&["id", "name", "email"])
.where_eq("is_active", true)
.where_in("id", |subquery| {
subquery.table("posts")
.select(&["user_id"])
.where_eq("published", true)
.group_by("user_id")
.having("COUNT(*)", ">", 5)
})
.order_by("name")
}, &strategies).await?;
let users = optimized_query.get().await?;
Ok(users)
}
Index Optimization and Management
use tusk_db::{IndexOptimizer, IndexStrategy, IndexRecommendation};// Index optimization
async fn optimize_indexes() -> Result<()> {
let index_optimizer = @IndexOptimizer::new().await?;
// Analyze current index usage
let index_analysis = index_optimizer.analyze_indexes().await?;
@log::info!("Index analysis", {
unused_indexes: index_analysis.unused_indexes,
missing_indexes: index_analysis.missing_indexes,
duplicate_indexes: index_analysis.duplicate_indexes,
});
// Get index recommendations
let recommendations = index_optimizer.get_recommendations().await?;
for recommendation in &recommendations {
@log::info!("Index recommendation", {
table: &recommendation.table,
columns: &recommendation.columns,
type_: recommendation.index_type,
reason: &recommendation.reason,
});
}
// Apply recommended indexes
for recommendation in recommendations {
if recommendation.should_apply {
index_optimizer.create_index(&recommendation).await?;
}
}
Ok(())
}
// Automatic index creation for slow queries
async fn auto_index_optimization() -> Result<()> {
let optimizer = @QueryOptimizer::new().await?;
// Monitor slow queries and create indexes automatically
optimizer.enable_auto_indexing(true).await?;
optimizer.set_slow_query_threshold(100).await?; // 100ms
// Run query that might be slow
let users = @db.table::<User>("users")
.where_eq("is_active", true)
.where_like("email", "%@example.com")
.order_by("created_at", "DESC")
.get()
.await?;
// If query is slow, optimizer will suggest/create indexes
Ok(users)
}
// Composite index optimization
async fn composite_index_optimization() -> Result<()> {
let index_optimizer = @IndexOptimizer::new().await?;
// Create composite index for common query patterns
let composite_index = IndexRecommendation {
table: "users".to_string(),
columns: vec!["is_active".to_string(), "created_at".to_string()],
index_type: IndexType::BTree,
reason: "Optimize active user queries with date filtering".to_string(),
should_apply: true,
};
index_optimizer.create_index(&composite_index).await?;
// Use the optimized query
let users = @db.table::<User>("users")
.where_eq("is_active", true)
.where_gt("created_at", Utc::now() - chrono::Duration::days(30))
.order_by("created_at", "DESC")
.get()
.await?;
Ok(users)
}
Query Rewriting and Optimization
use tusk_db::{QueryRewriter, RewriteRule, QueryTransformer};// Query rewriting for optimization
async fn query_rewriting_optimization() -> Result<Vec<User>> {
let rewriter = @QueryRewriter::new().await?;
// Define rewrite rules
let rules = vec![
RewriteRule::new("simplify_where", |query| {
// Simplify complex WHERE clauses
if query.has_complex_where() {
query.simplify_where_clauses()
}
}),
RewriteRule::new("optimize_joins", |query| {
// Optimize JOIN order
query.optimize_join_order()
}),
RewriteRule::new("eliminate_subqueries", |query| {
// Convert subqueries to JOINs where possible
query.convert_subqueries_to_joins()
}),
];
let original_query = @db.table::<User>("users")
.where_in("id", |subquery| {
subquery.table("posts")
.select(&["user_id"])
.where_eq("published", true)
})
.where_eq("is_active", true);
// Apply rewrite rules
let optimized_query = rewriter.rewrite_with_rules(&original_query, &rules).await?;
let users = optimized_query.get().await?;
Ok(users)
}
// Query transformation for better performance
async fn query_transformation() -> Result<Vec<User>> {
let transformer = @QueryTransformer::new().await?;
// Transform complex query to more efficient version
let complex_query = @db.table::<User>("users")
.where_exists(|subquery| {
subquery.table("posts")
.where_raw("posts.user_id = users.id", &[])
.where_eq("published", true)
})
.where_eq("is_active", true);
let transformed_query = transformer.transform(&complex_query).await?;
// The transformed query might use JOINs instead of EXISTS
let users = transformed_query.get().await?;
Ok(users)
}
Join Optimization
use tusk_db::{JoinOptimizer, JoinStrategy, JoinOrder};// Join optimization
async fn join_optimization() -> Result<Vec<User>> {
let join_optimizer = @JoinOptimizer::new().await?;
let complex_query = @db.table::<User>("users")
.join("posts", "users.id", "=", "posts.user_id")
.join("comments", "posts.id", "=", "comments.post_id")
.where_eq("users.is_active", true)
.where_eq("posts.published", true)
.select(&[
"users.*",
"COUNT(posts.id) as post_count",
"COUNT(comments.id) as comment_count"
])
.group_by("users.id");
// Optimize join order and strategy
let optimized_query = join_optimizer.optimize(&complex_query).await?;
let results = optimized_query.get().await?;
Ok(results)
}
// Join strategy selection
async fn join_strategy_selection() -> Result<Vec<User>> {
let join_optimizer = @JoinOptimizer::new().await?;
// Analyze join strategies
let strategies = join_optimizer.analyze_strategies(|query| {
query.table::<User>("users")
.join("posts", "users.id", "=", "posts.user_id")
.where_eq("users.is_active", true)
}).await?;
// Select best strategy
let best_strategy = join_optimizer.select_best_strategy(&strategies).await?;
@log::info!("Selected join strategy", {
strategy: best_strategy.name,
estimated_cost: best_strategy.estimated_cost,
reasoning: &best_strategy.reasoning,
});
// Apply the strategy
let optimized_query = join_optimizer.apply_strategy(&best_strategy).await?;
let users = optimized_query.get().await?;
Ok(users)
}
Subquery Optimization
use tusk_db::{SubqueryOptimizer, SubqueryStrategy};// Subquery optimization
async fn subquery_optimization() -> Result<Vec<User>> {
let subquery_optimizer = @SubqueryOptimizer::new().await?;
let query_with_subquery = @db.table::<User>("users")
.where_in("id", |subquery| {
subquery.table("posts")
.select(&["user_id"])
.where_eq("published", true)
.group_by("user_id")
.having("COUNT(*)", ">", 5)
})
.where_eq("is_active", true);
// Optimize subquery
let optimized_query = subquery_optimizer.optimize(&query_with_subquery).await?;
let users = optimized_query.get().await?;
Ok(users)
}
// Convert subqueries to JOINs
async fn subquery_to_join_conversion() -> Result<Vec<User>> {
let subquery_optimizer = @SubqueryOptimizer::new().await?;
let query = @db.table::<User>("users")
.where_exists(|subquery| {
subquery.table("posts")
.where_raw("posts.user_id = users.id", &[])
.where_eq("published", true)
});
// Convert EXISTS subquery to JOIN
let converted_query = subquery_optimizer.convert_to_join(&query).await?;
let users = converted_query.get().await?;
Ok(users)
}
Query Caching and Result Caching
use tusk_db::{QueryCache, CacheStrategy, CacheInvalidation};// Query caching for performance
async fn query_caching_optimization() -> Result<Vec<User>> {
let cache = @QueryCache::new().await?;
// Configure cache strategy
cache.set_strategy(CacheStrategy {
ttl: 3600, // 1 hour
max_size: 1000,
eviction_policy: EvictionPolicy::LRU,
}).await?;
let query = @db.table::<User>("users")
.where_eq("is_active", true)
.order_by("created_at", "DESC")
.limit(100);
// Try to get from cache first
let cache_key = query.generate_cache_key().await?;
if let Some(cached_result) = cache.get(&cache_key).await? {
@log::info!("Cache hit", { key: &cache_key });
return Ok(cached_result);
}
// Cache miss, execute query
@log::info!("Cache miss", { key: &cache_key });
let users = query.get().await?;
// Store in cache
cache.set(&cache_key, &users).await?;
Ok(users)
}
// Result caching with invalidation
async fn result_caching_with_invalidation() -> Result<Vec<User>> {
let cache = @QueryCache::new().await?;
// Set up cache invalidation rules
cache.set_invalidation_rules(&[
CacheInvalidation::new("users", |event| {
match event {
"INSERT" | "UPDATE" | "DELETE" => true,
_ => false,
}
}),
]).await?;
let query = @db.table::<User>("users")
.where_eq("is_active", true);
let cache_key = query.generate_cache_key().await?;
// Get from cache or execute
let users = cache.get_or_execute(&cache_key, || async {
query.get().await
}).await?;
Ok(users)
}
Query Performance Monitoring
use tusk_db::{QueryMonitor, PerformanceMetrics, SlowQueryDetector};// Query performance monitoring
async fn query_performance_monitoring() -> Result<()> {
let monitor = @QueryMonitor::new().await?;
// Enable monitoring
monitor.enable(true).await?;
monitor.set_slow_query_threshold(100).await?; // 100ms
// Execute query with monitoring
let start = std::time::Instant::now();
let users = @db.table::<User>("users")
.where_eq("is_active", true)
.order_by("created_at", "DESC")
.limit(100)
.get()
.await?;
let duration = start.elapsed();
// Record metrics
monitor.record_query_metrics(&QueryMetrics {
sql: "SELECT * FROM users WHERE is_active = true ORDER BY created_at DESC LIMIT 100".to_string(),
duration: duration.as_millis() as u64,
rows_returned: users.len() as u64,
timestamp: Utc::now(),
}).await?;
// Check for slow queries
let slow_queries = monitor.get_slow_queries().await?;
for slow_query in &slow_queries {
@log::warn!("Slow query detected", {
sql: &slow_query.sql,
duration: slow_query.duration,
suggestions: &slow_query.optimization_suggestions,
});
}
Ok(())
}
// Real-time query monitoring
async fn real_time_query_monitoring() -> Result<()> {
let monitor = @QueryMonitor::new().await?;
// Set up real-time monitoring
monitor.enable_real_time_monitoring(true).await?;
// Subscribe to query events
let mut query_stream = monitor.subscribe_to_queries().await?;
tokio::spawn(async move {
while let Some(query_event) = query_stream.recv().await {
match query_event {
QueryEvent::SlowQuery(query) => {
@log::warn!("Real-time slow query alert", {
sql: &query.sql,
duration: query.duration,
});
}
QueryEvent::Error(query_error) => {
@log::error!("Query error", {
sql: &query_error.sql,
error: &query_error.error,
});
}
_ => {}
}
}
});
Ok(())
}
Query Optimization Best Practices
use tusk_db::{OptimizationBestPractices, QueryGuidelines};// Best practices for query optimization
async fn query_optimization_best_practices() -> Result<()> {
let optimizer = @QueryOptimizer::new().await?;
// 1. Use appropriate indexes
let indexed_query = @db.table::<User>("users")
.where_eq("is_active", true) // Uses index on is_active
.where_eq("email", "test@example.com") // Uses unique index on email
.get()
.await?;
// 2. Avoid SELECT *
let selective_query = @db.table::<User>("users")
.select(&["id", "name", "email"]) // Only select needed columns
.where_eq("is_active", true)
.get()
.await?;
// 3. Use LIMIT for large result sets
let limited_query = @db.table::<User>("users")
.where_eq("is_active", true)
.order_by("created_at", "DESC")
.limit(100) // Prevent large result sets
.get()
.await?;
// 4. Optimize JOINs
let optimized_join = @db.table::<User>("users")
.join("posts", "users.id", "=", "posts.user_id")
.where_eq("users.is_active", true)
.where_eq("posts.published", true)
.select(&["users.id", "users.name", "COUNT(posts.id) as post_count"])
.group_by("users.id")
.get()
.await?;
// 5. Use appropriate data types
let typed_query = @db.table::<User>("users")
.where_eq("is_active", true) // Boolean comparison
.where_gt("created_at", Utc::now() - chrono::Duration::days(30)) // Date comparison
.get()
.await?;
// 6. Avoid N+1 queries with eager loading
let eager_loaded_query = @db.table::<User>("users")
.with(&["posts", "posts.comments"]) // Eager load relationships
.where_eq("is_active", true)
.get()
.await?;
// 7. Use query caching for frequently accessed data
let cached_query = @db.table::<User>("users")
.where_eq("is_active", true)
.cache(3600) // Cache for 1 hour
.get()
.await?;
Ok(())
}
Testing Query Optimization
use tusk_db::test_utils::{TestQueryOptimizer, PerformanceTest};// Test query optimization
#[tokio::test]
async fn test_query_optimization() -> Result<()> {
let test_db = @TestDatabase::new().await?;
let optimizer = @TestQueryOptimizer::new(&test_db).await?;
// Create test data
let users = @UserFactory::new()
.count(1000)
.create()
.await?;
// Test unoptimized query
let start = std::time::Instant::now();
let unoptimized_users = @db.table::<User>("users")
.where_eq("is_active", true)
.get()
.await?;
let unoptimized_duration = start.elapsed();
// Test optimized query
let start = std::time::Instant::now();
let optimized_query = optimizer.optimize(|query| {
query.table::<User>("users")
.where_eq("is_active", true)
}).await?;
let optimized_users = optimized_query.get().await?;
let optimized_duration = start.elapsed();
// Verify optimization improved performance
assert!(optimized_duration < unoptimized_duration);
assert_eq!(unoptimized_users.len(), optimized_users.len());
Ok(())
}
// Performance regression testing
#[tokio::test]
async fn test_performance_regression() -> Result<()> {
let test_db = @TestDatabase::new().await?;
let performance_test = @PerformanceTest::new(&test_db).await?;
// Define performance baseline
let baseline = performance_test.establish_baseline(|query| {
query.table::<User>("users")
.where_eq("is_active", true)
.order_by("created_at", "DESC")
.limit(100)
}).await?;
// Run performance test
let current_performance = performance_test.measure_performance(|query| {
query.table::<User>("users")
.where_eq("is_active", true)
.order_by("created_at", "DESC")
.limit(100)
}).await?;
// Check for performance regression
assert!(current_performance.duration <= baseline.duration * 1.1); // Allow 10% regression
Ok(())
}
Best Practices for Rust Query Optimization
1. Use Strong Types: Leverage Rust's type system for query safety 2. Index Strategy: Create appropriate indexes for query patterns 3. Query Analysis: Analyze query performance regularly 4. Caching: Use query caching for frequently accessed data 5. Monitoring: Monitor query performance in production 6. Testing: Test optimization strategies thoroughly 7. Documentation: Document complex optimization logic 8. Benchmarking: Benchmark before and after optimizations 9. Incremental: Apply optimizations incrementally 10. Monitoring: Continuously monitor for performance regressions
Related Topics
- database-overview-rust
- Database integration overview
- query-builder-rust
- Fluent query interface
- orm-models-rust
- Model definition and usage
- migrations-rust
- Database schema versioning
- relationships-rust
- Model relationships
---
Ready to build type-safe, high-performance query optimization with Rust and TuskLang?