🦀 Performance Optimization in TuskLang for Rust

Rust Documentation

Performance Optimization in TuskLang for Rust

Performance optimization in TuskLang for Rust leverages Rust's zero-cost abstractions, memory safety, and concurrency features to achieve maximum performance while maintaining the power and flexibility of TuskLang's configuration and scripting capabilities.

Memory Management Optimization

// Optimized memory management with TuskLang
pub struct OptimizedMemoryManager {
    pools: std::collections::HashMap<usize, ObjectPool>,
    cache: lru::LruCache<String, Box<dyn std::any::Any + Send + Sync>>,
}

pub struct ObjectPool { objects: Vec<Box<dyn std::any::Any + Send + Sync>>, object_size: usize, max_size: usize, }

impl OptimizedMemoryManager { pub fn new() -> Self { Self { pools: std::collections::HashMap::new(), cache: lru::LruCache::new(1000), // 1000 items max } } pub fn get_object<T: 'static + Send + Sync + Default>(&mut self, size: usize) -> T { // Try to get from pool first if let Some(pool) = self.pools.get_mut(&size) { if let Some(obj) = pool.objects.pop() { if let Ok(obj) = obj.downcast::<T>() { return *obj; } } } // Create new object if pool is empty T::default() } pub fn return_object<T: 'static + Send + Sync>(&mut self, obj: T, size: usize) { let pool = self.pools.entry(size).or_insert_with(|| ObjectPool { objects: Vec::new(), object_size: size, max_size: 100, }); if pool.objects.len() < pool.max_size { pool.objects.push(Box::new(obj)); } } pub fn cache_get<T: 'static + Send + Sync>(&mut self, key: &str) -> Option<&T> { self.cache.get(key)?.downcast_ref::<T>() } pub fn cache_set<T: 'static + Send + Sync>(&mut self, key: String, value: T) { self.cache.put(key, Box::new(value)); } }

// Zero-copy string handling pub struct StringPool { strings: std::collections::HashMap<String, std::sync::Arc<String>>, }

impl StringPool { pub fn new() -> Self { Self { strings: std::collections::HashMap::new(), } } pub fn intern(&mut self, s: String) -> std::sync::Arc<String> { if let Some(arc) = self.strings.get(&s) { arc.clone() } else { let arc = std::sync::Arc::new(s.clone()); self.strings.insert(s, arc.clone()); arc } } pub fn get(&self, s: &str) -> Option<std::sync::Arc<String>> { self.strings.get(s).cloned() } }

// Usage with TuskLang let mut memory_manager = OptimizedMemoryManager::new(); let mut string_pool = StringPool::new();

// Optimized configuration loading let config_string = @file.read("config.tsk")?; let interned_config = string_pool.intern(config_string);

// Cache parsed configuration let parsed_config = @config.parse(&interned_config)?; memory_manager.cache_set("parsed_config".to_string(), parsed_config);

Compile-Time Optimization

// Compile-time configuration optimization
pub struct CompileTimeConfig {
    values: std::collections::HashMap<String, ConfigValue>,
}

#[derive(Clone)] pub enum ConfigValue { String(&'static str), Integer(i64), Float(f64), Boolean(bool), Array(Vec<ConfigValue>), Object(std::collections::HashMap<String, ConfigValue>), }

impl CompileTimeConfig { pub const fn new() -> Self { Self { values: std::collections::HashMap::new(), } } pub const fn with_value(mut self, key: &'static str, value: ConfigValue) -> Self { // Note: This is a simplified version. In practice, you'd use const generics // or a macro-based approach for true compile-time evaluation self } pub fn get<T>(&self, key: &str) -> Option<T> where T: From<ConfigValue>, { self.values.get(key).cloned().map(T::from) } }

// Compile-time optimized TuskLang operations #[macro_export] macro_rules! const_tusk_config { ($($key:ident = $value:expr),*) => {{ let mut config = std::collections::HashMap::new(); $( config.insert(stringify!($key).to_string(), $value); )* config }}; }

// Usage const APP_CONFIG: std::collections::HashMap<&str, &str> = const_tusk_config! { app_name = "OptimizedApp", version = "1.0.0", debug_mode = "false" };

// Compile-time evaluated expressions const MAX_CONNECTIONS: usize = 1000; const CACHE_TTL: u64 = 3600; const API_TIMEOUT: u64 = 30;

// Compile-time string interning const INTERNED_STRINGS: &[&str] = &[ "GET", "POST", "PUT", "DELETE", "application/json", "text/plain", "Content-Type", "Authorization", ];

Concurrency and Parallelism

// Optimized concurrent processing with TuskLang
pub struct ConcurrentProcessor {
    thread_pool: rayon::ThreadPool,
    work_queue: crossbeam_channel::Sender<WorkItem>,
    result_receiver: crossbeam_channel::Receiver<WorkResult>,
}

#[derive(Clone)] pub struct WorkItem { pub id: u64, pub operation: String, pub data: serde_json::Value, pub priority: u8, }

pub struct WorkResult { pub id: u64, pub result: Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>>, pub duration: std::time::Duration, }

impl ConcurrentProcessor { pub fn new(thread_count: usize) -> Self { let thread_pool = rayon::ThreadPoolBuilder::new() .num_threads(thread_count) .build() .unwrap(); let (work_sender, work_receiver) = crossbeam_channel::unbounded(); let (result_sender, result_receiver) = crossbeam_channel::unbounded(); // Start worker threads for _ in 0..thread_count { let work_receiver = work_receiver.clone(); let result_sender = result_sender.clone(); thread_pool.spawn(move || { while let Ok(work_item) = work_receiver.recv() { let start_time = std::time::Instant::now(); let result = Self::process_work_item(work_item.clone()); let duration = start_time.elapsed(); let work_result = WorkResult { id: work_item.id, result, duration, }; let _ = result_sender.send(work_result); } }); } Self { thread_pool, work_queue: work_sender, result_receiver, } } fn process_work_item(item: WorkItem) -> Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>> { match item.operation.as_str() { "database_query" => { let query = item.data["query"].as_str().unwrap(); @db.execute(query) } "api_request" => { let url = item.data["url"].as_str().unwrap(); @http.get(url) } "file_operation" => { let path = item.data["path"].as_str().unwrap(); @file.read(path) } "cache_operation" => { let key = item.data["key"].as_str().unwrap(); @cache.get(key) } _ => Err("Unknown operation".into()), } } pub fn submit_work(&self, item: WorkItem) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { self.work_queue.send(item)?; Ok(()) } pub fn get_results(&self) -> Vec<WorkResult> { let mut results = Vec::new(); while let Ok(result) = self.result_receiver.try_recv() { results.push(result); } results } pub fn process_batch(&self, items: Vec<WorkItem>) -> Vec<WorkResult> { // Submit all work items for item in items { self.submit_work(item).unwrap(); } // Collect results let mut results = Vec::new(); let expected_count = items.len(); while results.len() < expected_count { if let Ok(result) = self.result_receiver.recv() { results.push(result); } } results } }

// Async/await optimized processing pub struct AsyncProcessor { runtime: tokio::runtime::Runtime, semaphore: std::sync::Arc<tokio::sync::Semaphore>, }

impl AsyncProcessor { pub fn new(max_concurrent: usize) -> Self { let runtime = tokio::runtime::Builder::new_multi_thread() .worker_threads(num_cpus::get()) .enable_all() .build() .unwrap(); Self { runtime, semaphore: std::sync::Arc::new(tokio::sync::Semaphore::new(max_concurrent)), } } pub async fn process_concurrent<T, F, Fut>(&self, items: Vec<T>, processor: F) -> Vec<Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>>> where F: Fn(T) -> Fut + Send + Sync + 'static, Fut: std::future::Future<Output = Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>>> + Send + 'static, T: Send + 'static, { let semaphore = self.semaphore.clone(); let futures: Vec<_> = items.into_iter().map(|item| { let semaphore = semaphore.clone(); async move { let _permit = semaphore.acquire().await.unwrap(); processor(item).await } }).collect(); futures::future::join_all(futures).await } }

// Usage let processor = ConcurrentProcessor::new(8); let async_processor = AsyncProcessor::new(100);

// Process database queries concurrently let queries = vec![ "SELECT * FROM users WHERE id = 1", "SELECT * FROM products WHERE category = 'electronics'", "SELECT COUNT(*) FROM orders WHERE status = 'pending'", ];

let work_items: Vec<WorkItem> = queries.into_iter().enumerate().map(|(i, query)| { WorkItem { id: i as u64, operation: "database_query".to_string(), data: serde_json::json!({ "query": query }), priority: 1, } }).collect();

let results = processor.process_batch(work_items);

Caching Strategies

// Multi-level caching system
pub struct MultiLevelCache {
    l1_cache: std::sync::Arc<tokio::sync::RwLock<lru::LruCache<String, CachedValue>>>,
    l2_cache: std::sync::Arc<redis::Client>,
    l3_cache: std::sync::Arc<Database>,
}

#[derive(Clone)] pub struct CachedValue { pub data: serde_json::Value, pub timestamp: std::time::Instant, pub ttl: std::time::Duration, }

impl MultiLevelCache { pub fn new(l1_size: usize, redis_url: &str, database: Database) -> Self { let l1_cache = std::sync::Arc::new(tokio::sync::RwLock::new(lru::LruCache::new(l1_size))); let l2_cache = std::sync::Arc::new(redis::Client::open(redis_url).unwrap()); let l3_cache = std::sync::Arc::new(database); Self { l1_cache, l2_cache, l3_cache, } } pub async fn get(&self, key: &str) -> Result<Option<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> { // Check L1 cache first if let Some(cached) = self.l1_cache.read().await.get(key) { if cached.timestamp.elapsed() < cached.ttl { return Ok(Some(cached.data.clone())); } } // Check L2 cache (Redis) if let Ok(Some(data)) = self.get_from_redis(key).await { // Update L1 cache let cached_value = CachedValue { data: data.clone(), timestamp: std::time::Instant::now(), ttl: std::time::Duration::from_secs(300), // 5 minutes }; self.l1_cache.write().await.put(key.to_string(), cached_value); return Ok(Some(data)); } // Check L3 cache (Database) if let Ok(Some(data)) = self.get_from_database(key).await { // Update L2 and L1 caches self.set_in_redis(key, &data, 3600).await?; // 1 hour TTL let cached_value = CachedValue { data: data.clone(), timestamp: std::time::Instant::now(), ttl: std::time::Duration::from_secs(300), }; self.l1_cache.write().await.put(key.to_string(), cached_value); return Ok(Some(data)); } Ok(None) } pub async fn set(&self, key: &str, value: &serde_json::Value, ttl: u64) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { // Set in all cache levels let cached_value = CachedValue { data: value.clone(), timestamp: std::time::Instant::now(), ttl: std::time::Duration::from_secs(ttl), }; self.l1_cache.write().await.put(key.to_string(), cached_value); self.set_in_redis(key, value, ttl).await?; self.set_in_database(key, value).await?; Ok(()) } async fn get_from_redis(&self, key: &str) -> Result<Option<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> { let mut conn = self.l2_cache.get_async_connection().await?; let result: Option<String> = redis::cmd("GET").arg(key).query_async(&mut conn).await?; match result { Some(data) => Ok(Some(serde_json::from_str(&data)?)), None => Ok(None), } } async fn set_in_redis(&self, key: &str, value: &serde_json::Value, ttl: u64) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { let mut conn = self.l2_cache.get_async_connection().await?; let data = serde_json::to_string(value)?; redis::cmd("SETEX") .arg(key) .arg(ttl) .arg(data) .query_async(&mut conn) .await?; Ok(()) } async fn get_from_database(&self, key: &str) -> Result<Option<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> { let result = @db.table("cache") .where("cache_key", key) .where("expires_at", ">", @date.now()) .first() .await?; Ok(result.map(|row| row["cache_value"].clone())) } async fn set_in_database(&self, key: &str, value: &serde_json::Value) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { let expires_at = @date.add_hours(@date.now(), 24); // 24 hours TTL @db.table("cache") .upsert(&serde_json::json!({ "cache_key": key, "cache_value": value, "expires_at": expires_at, "updated_at": @date.now() })) .await?; Ok(()) } }

// Usage with TuskLang let cache = MultiLevelCache::new(1000, "redis://localhost:6379", database);

// Cache TuskLang configuration let config = @config.load("app_config.tsk"); cache.set("app_config", &config, 3600).await?;

// Retrieve cached configuration if let Some(cached_config) = cache.get("app_config").await? { // Use cached configuration let db_url = cached_config["database"]["url"].as_str().unwrap(); let api_key = cached_config["api"]["key"].as_str().unwrap(); }

Database Optimization

// Optimized database operations with TuskLang
pub struct OptimizedDatabase {
    connection_pool: deadpool_postgres::Pool,
    query_cache: std::sync::Arc<tokio::sync::RwLock<lru::LruCache<String, PreparedStatement>>>,
    batch_size: usize,
}

impl OptimizedDatabase { pub fn new(pool: deadpool_postgres::Pool, batch_size: usize) -> Self { Self { connection_pool: pool, query_cache: std::sync::Arc::new(tokio::sync::RwLock::new(lru::LruCache::new(100))), batch_size, } } pub async fn execute_batch(&self, queries: Vec<String>) -> Result<Vec<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> { let mut results = Vec::new(); let batches: Vec<_> = queries.chunks(self.batch_size).collect(); for batch in batches { let batch_results = self.execute_batch_internal(batch).await?; results.extend(batch_results); } Ok(results) } async fn execute_batch_internal(&self, queries: &[String]) -> Result<Vec<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> { let conn = self.connection_pool.get().await?; let mut results = Vec::new(); for query in queries { // Check query cache first if let Some(stmt) = self.query_cache.read().await.get(query) { let result = conn.execute(stmt, &[]).await?; results.push(serde_json::to_value(result)?); } else { // Prepare and cache the statement let stmt = conn.prepare(query).await?; self.query_cache.write().await.put(query.to_string(), stmt.clone()); let result = conn.execute(&stmt, &[]).await?; results.push(serde_json::to_value(result)?); } } Ok(results) } pub async fn optimized_query(&self, query: &str, params: &[serde_json::Value]) -> Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>> { // Use TuskLang query optimization let optimized_query = @query.optimize(query)?; let execution_plan = @query.analyze(&optimized_query)?; @log.debug("Query execution plan", { original_query = query, optimized_query = &optimized_query, execution_plan = &execution_plan, }); // Execute with optimized parameters let conn = self.connection_pool.get().await?; let stmt = conn.prepare(&optimized_query).await?; let result = conn.query(&stmt, &params).await?; Ok(serde_json::to_value(result)?) } pub async fn bulk_insert(&self, table: &str, data: Vec<serde_json::Value>) -> Result<u64, Box<dyn std::error::Error + Send + Sync>> { if data.is_empty() { return Ok(0); } let conn = self.connection_pool.get().await?; let columns: Vec<_> = data[0].as_object().unwrap().keys().cloned().collect(); // Build bulk insert query let placeholders: Vec<_> = (0..data.len()).map(|i| { let row_placeholders: Vec<_> = (0..columns.len()).map(|j| format!("${}", i * columns.len() + j + 1)).collect(); format!("({})", row_placeholders.join(", ")) }).collect(); let query = format!( "INSERT INTO {} ({}) VALUES {}", table, columns.join(", "), placeholders.join(", ") ); // Flatten parameters let mut params = Vec::new(); for row in &data { for column in &columns { params.push(row[column].clone()); } } let stmt = conn.prepare(&query).await?; let result = conn.execute(&stmt, &params).await?; Ok(result) } }

// Usage let db = OptimizedDatabase::new(connection_pool, 1000);

// Optimized batch processing let queries = vec![ "SELECT * FROM users WHERE status = 'active'".to_string(), "SELECT COUNT(*) FROM orders WHERE created_at > NOW() - INTERVAL '1 day'".to_string(), "SELECT product_id, SUM(quantity) FROM order_items GROUP BY product_id".to_string(), ];

let results = db.execute_batch(queries).await?;

// Bulk insert with TuskLang data let user_data = @db.users.get_all()?; let serialized_data: Vec<serde_json::Value> = user_data.into_iter().map(|user| { serde_json::to_value(user).unwrap() }).collect();

let inserted_count = db.bulk_insert("users_backup", serialized_data).await?;

Network Optimization

// Optimized HTTP client with connection pooling
pub struct OptimizedHttpClient {
    client: reqwest::Client,
    connection_pool: std::sync::Arc<tokio::sync::RwLock<lru::LruCache<String, reqwest::Client>>>,
    rate_limiter: std::sync::Arc<RateLimiter>,
}

impl OptimizedHttpClient { pub fn new() -> Self { let client = reqwest::Client::builder() .pool_max_idle_per_host(10) .pool_idle_timeout(std::time::Duration::from_secs(30)) .timeout(std::time::Duration::from_secs(30)) .build() .unwrap(); Self { client, connection_pool: std::sync::Arc::new(tokio::sync::RwLock::new(lru::LruCache::new(50))), rate_limiter: std::sync::Arc::new(RateLimiter::new(100, 1.0)), // 100 requests per second } } pub async fn optimized_request(&self, method: &str, url: &str, body: Option<serde_json::Value>) -> Result<reqwest::Response, Box<dyn std::error::Error + Send + Sync>> { // Apply rate limiting self.rate_limiter.acquire().await?; // Use TuskLang HTTP optimization let optimized_url = @http.optimize_url(url)?; let optimized_headers = @http.get_optimized_headers(method, url)?; let request = match method.to_uppercase().as_str() { "GET" => self.client.get(&optimized_url), "POST" => { let mut req = self.client.post(&optimized_url); if let Some(body_data) = body { req = req.json(&body_data); } req } "PUT" => { let mut req = self.client.put(&optimized_url); if let Some(body_data) = body { req = req.json(&body_data); } req } "DELETE" => self.client.delete(&optimized_url), _ => return Err("Unsupported HTTP method".into()), }; // Add optimized headers let request = optimized_headers.iter().fold(request, |req, (key, value)| { req.header(key, value) }); let response = request.send().await?; // Cache successful responses if response.status().is_success() { self.cache_response(&optimized_url, &response).await?; } Ok(response) } async fn cache_response(&self, url: &str, response: &reqwest::Response) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { if let Some(cache_control) = response.headers().get("cache-control") { if cache_control.to_str()?.contains("max-age=") { let body = response.bytes().await?; @cache.set(url, &body, 3600).await?; // Cache for 1 hour } } Ok(()) } pub async fn batch_requests(&self, requests: Vec<HttpRequest>) -> Vec<Result<reqwest::Response, Box<dyn std::error::Error + Send + Sync>>> { let futures: Vec<_> = requests.into_iter().map(|req| { self.optimized_request(&req.method, &req.url, req.body) }).collect(); futures::future::join_all(futures).await } }

pub struct HttpRequest { pub method: String, pub url: String, pub body: Option<serde_json::Value>, }

pub struct RateLimiter { tokens: std::sync::atomic::AtomicU32, max_tokens: u32, refill_rate: f64, last_refill: std::sync::Mutex<std::time::Instant>, }

impl RateLimiter { pub fn new(max_tokens: u32, refill_rate: f64) -> Self { Self { tokens: std::sync::atomic::AtomicU32::new(max_tokens), max_tokens, refill_rate, last_refill: std::sync::Mutex::new(std::time::Instant::now()), } } pub async fn acquire(&self) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { loop { self.refill_tokens(); let current_tokens = self.tokens.load(std::sync::atomic::Ordering::Relaxed); if current_tokens > 0 { if self.tokens.compare_exchange( current_tokens, current_tokens - 1, std::sync::atomic::Ordering::Relaxed, std::sync::atomic::Ordering::Relaxed, ).is_ok() { return Ok(()); } } tokio::time::sleep(std::time::Duration::from_millis(10)).await; } } fn refill_tokens(&self) { if let Ok(mut last_refill) = self.last_refill.lock() { let now = std::time::Instant::now(); let elapsed = now.duration_since(*last_refill).as_secs_f64(); let tokens_to_add = (elapsed * self.refill_rate) as u32; if tokens_to_add > 0 { let current_tokens = self.tokens.load(std::sync::atomic::Ordering::Relaxed); let new_tokens = std::cmp::min(current_tokens + tokens_to_add, self.max_tokens); self.tokens.store(new_tokens, std::sync::atomic::Ordering::Relaxed); *last_refill = now; } } } }

// Usage let http_client = OptimizedHttpClient::new();

// Batch API requests let requests = vec![ HttpRequest { method: "GET".to_string(), url: "https://api.example.com/users".to_string(), body: None, }, HttpRequest { method: "POST".to_string(), url: "https://api.example.com/users".to_string(), body: Some(serde_json::json!({ "name": "John Doe", "email": "john@example.com" })), }, ];

let responses = http_client.batch_requests(requests).await;

Algorithm Optimization

// Optimized algorithms with TuskLang integration
pub struct OptimizedAlgorithms;

impl OptimizedAlgorithms { // Optimized sorting with custom comparison pub fn optimized_sort<T, F>(items: &mut [T], compare: F) -> Result<(), Box<dyn std::error::Error + Send + Sync>> where F: Fn(&T, &T) -> std::cmp::Ordering + Send + Sync, { // Use TuskLang to determine optimal sorting algorithm let algorithm = @algorithm.select_sorting(items.len(), &compare)?; match algorithm.as_str() { "quicksort" => Self::quicksort(items, &compare), "mergesort" => Self::mergesort(items, &compare), "heapsort" => Self::heapsort(items, &compare), "timsort" => Self::timsort(items, &compare), _ => items.sort_by(compare), } Ok(()) } // Optimized search with indexing pub fn optimized_search<T, F>(items: &[T], target: &T, compare: F) -> Option<usize> where F: Fn(&T, &T) -> std::cmp::Ordering + Send + Sync, T: Clone, { // Use TuskLang to determine optimal search strategy let strategy = @algorithm.select_search(items.len(), target)?; match strategy.as_str() { "binary_search" => items.binary_search_by(|item| compare(item, target)).ok(), "linear_search" => items.iter().position(|item| compare(item, target) == std::cmp::Ordering::Equal), "hash_search" => { let hash_map: std::collections::HashMap<_, _> = items.iter().enumerate().collect(); hash_map.get(target).copied() } _ => items.binary_search_by(|item| compare(item, target)).ok(), } } // Optimized data processing pipeline pub async fn optimized_pipeline<T, U, F>(items: Vec<T>, processor: F, batch_size: usize) -> Result<Vec<U>, Box<dyn std::error::Error + Send + Sync>> where F: Fn(T) -> U + Send + Sync + 'static, T: Send + 'static, U: Send + 'static, { // Use TuskLang to optimize pipeline let pipeline_config = @pipeline.optimize(items.len(), batch_size)?; let chunks: Vec<_> = items.chunks(pipeline_config.batch_size).collect(); let mut results = Vec::new(); for chunk in chunks { let chunk_results: Vec<U> = chunk.iter().cloned().map(&processor).collect(); results.extend(chunk_results); } Ok(results) } // Optimized caching algorithm pub fn optimized_cache<T>(&self, key: &str, generator: impl Fn() -> T, ttl: std::time::Duration) -> T where T: Clone + Send + Sync + 'static, { // Use TuskLang cache optimization let cache_key = @cache.optimize_key(key)?; let cache_strategy = @cache.select_strategy(&cache_key, ttl)?; match cache_strategy.as_str() { "lru" => self.lru_cache.get_or_insert_with(cache_key, generator), "lfu" => self.lfu_cache.get_or_insert_with(cache_key, generator), "ttl" => self.ttl_cache.get_or_insert_with(cache_key, generator, ttl), _ => generator(), } } }

// Usage let algorithms = OptimizedAlgorithms;

// Optimized sorting let mut data = vec![5, 2, 8, 1, 9, 3]; algorithms.optimized_sort(&mut data, |a, b| a.cmp(b))?;

// Optimized search let target = 8; if let Some(index) = algorithms.optimized_search(&data, &target, |a, b| a.cmp(b)) { println!("Found {} at index {}", target, index); }

// Optimized pipeline processing let numbers = (1..1000).collect::<Vec<i32>>(); let processed = algorithms.optimized_pipeline(numbers, |n| n * 2, 100).await?;

This comprehensive guide covers Rust-specific performance optimization patterns, ensuring maximum performance while maintaining the power and flexibility of TuskLang's capabilities.