🦀 Performance Optimization in TuskLang for Rust
Performance Optimization in TuskLang for Rust
Performance optimization in TuskLang for Rust leverages Rust's zero-cost abstractions, memory safety, and concurrency features to achieve maximum performance while maintaining the power and flexibility of TuskLang's configuration and scripting capabilities.
Memory Management Optimization
// Optimized memory management with TuskLang
pub struct OptimizedMemoryManager {
pools: std::collections::HashMap<usize, ObjectPool>,
cache: lru::LruCache<String, Box<dyn std::any::Any + Send + Sync>>,
}pub struct ObjectPool {
objects: Vec<Box<dyn std::any::Any + Send + Sync>>,
object_size: usize,
max_size: usize,
}
impl OptimizedMemoryManager {
pub fn new() -> Self {
Self {
pools: std::collections::HashMap::new(),
cache: lru::LruCache::new(1000), // 1000 items max
}
}
pub fn get_object<T: 'static + Send + Sync + Default>(&mut self, size: usize) -> T {
// Try to get from pool first
if let Some(pool) = self.pools.get_mut(&size) {
if let Some(obj) = pool.objects.pop() {
if let Ok(obj) = obj.downcast::<T>() {
return *obj;
}
}
}
// Create new object if pool is empty
T::default()
}
pub fn return_object<T: 'static + Send + Sync>(&mut self, obj: T, size: usize) {
let pool = self.pools.entry(size).or_insert_with(|| ObjectPool {
objects: Vec::new(),
object_size: size,
max_size: 100,
});
if pool.objects.len() < pool.max_size {
pool.objects.push(Box::new(obj));
}
}
pub fn cache_get<T: 'static + Send + Sync>(&mut self, key: &str) -> Option<&T> {
self.cache.get(key)?.downcast_ref::<T>()
}
pub fn cache_set<T: 'static + Send + Sync>(&mut self, key: String, value: T) {
self.cache.put(key, Box::new(value));
}
}
// Zero-copy string handling
pub struct StringPool {
strings: std::collections::HashMap<String, std::sync::Arc<String>>,
}
impl StringPool {
pub fn new() -> Self {
Self {
strings: std::collections::HashMap::new(),
}
}
pub fn intern(&mut self, s: String) -> std::sync::Arc<String> {
if let Some(arc) = self.strings.get(&s) {
arc.clone()
} else {
let arc = std::sync::Arc::new(s.clone());
self.strings.insert(s, arc.clone());
arc
}
}
pub fn get(&self, s: &str) -> Option<std::sync::Arc<String>> {
self.strings.get(s).cloned()
}
}
// Usage with TuskLang
let mut memory_manager = OptimizedMemoryManager::new();
let mut string_pool = StringPool::new();
// Optimized configuration loading
let config_string = @file.read("config.tsk")?;
let interned_config = string_pool.intern(config_string);
// Cache parsed configuration
let parsed_config = @config.parse(&interned_config)?;
memory_manager.cache_set("parsed_config".to_string(), parsed_config);
Compile-Time Optimization
// Compile-time configuration optimization
pub struct CompileTimeConfig {
values: std::collections::HashMap<String, ConfigValue>,
}#[derive(Clone)]
pub enum ConfigValue {
String(&'static str),
Integer(i64),
Float(f64),
Boolean(bool),
Array(Vec<ConfigValue>),
Object(std::collections::HashMap<String, ConfigValue>),
}
impl CompileTimeConfig {
pub const fn new() -> Self {
Self {
values: std::collections::HashMap::new(),
}
}
pub const fn with_value(mut self, key: &'static str, value: ConfigValue) -> Self {
// Note: This is a simplified version. In practice, you'd use const generics
// or a macro-based approach for true compile-time evaluation
self
}
pub fn get<T>(&self, key: &str) -> Option<T>
where
T: From<ConfigValue>,
{
self.values.get(key).cloned().map(T::from)
}
}
// Compile-time optimized TuskLang operations
#[macro_export]
macro_rules! const_tusk_config {
($($key:ident = $value:expr),*) => {{
let mut config = std::collections::HashMap::new();
$(
config.insert(stringify!($key).to_string(), $value);
)*
config
}};
}
// Usage
const APP_CONFIG: std::collections::HashMap<&str, &str> = const_tusk_config! {
app_name = "OptimizedApp",
version = "1.0.0",
debug_mode = "false"
};
// Compile-time evaluated expressions
const MAX_CONNECTIONS: usize = 1000;
const CACHE_TTL: u64 = 3600;
const API_TIMEOUT: u64 = 30;
// Compile-time string interning
const INTERNED_STRINGS: &[&str] = &[
"GET", "POST", "PUT", "DELETE",
"application/json", "text/plain",
"Content-Type", "Authorization",
];
Concurrency and Parallelism
// Optimized concurrent processing with TuskLang
pub struct ConcurrentProcessor {
thread_pool: rayon::ThreadPool,
work_queue: crossbeam_channel::Sender<WorkItem>,
result_receiver: crossbeam_channel::Receiver<WorkResult>,
}#[derive(Clone)]
pub struct WorkItem {
pub id: u64,
pub operation: String,
pub data: serde_json::Value,
pub priority: u8,
}
pub struct WorkResult {
pub id: u64,
pub result: Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>>,
pub duration: std::time::Duration,
}
impl ConcurrentProcessor {
pub fn new(thread_count: usize) -> Self {
let thread_pool = rayon::ThreadPoolBuilder::new()
.num_threads(thread_count)
.build()
.unwrap();
let (work_sender, work_receiver) = crossbeam_channel::unbounded();
let (result_sender, result_receiver) = crossbeam_channel::unbounded();
// Start worker threads
for _ in 0..thread_count {
let work_receiver = work_receiver.clone();
let result_sender = result_sender.clone();
thread_pool.spawn(move || {
while let Ok(work_item) = work_receiver.recv() {
let start_time = std::time::Instant::now();
let result = Self::process_work_item(work_item.clone());
let duration = start_time.elapsed();
let work_result = WorkResult {
id: work_item.id,
result,
duration,
};
let _ = result_sender.send(work_result);
}
});
}
Self {
thread_pool,
work_queue: work_sender,
result_receiver,
}
}
fn process_work_item(item: WorkItem) -> Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>> {
match item.operation.as_str() {
"database_query" => {
let query = item.data["query"].as_str().unwrap();
@db.execute(query)
}
"api_request" => {
let url = item.data["url"].as_str().unwrap();
@http.get(url)
}
"file_operation" => {
let path = item.data["path"].as_str().unwrap();
@file.read(path)
}
"cache_operation" => {
let key = item.data["key"].as_str().unwrap();
@cache.get(key)
}
_ => Err("Unknown operation".into()),
}
}
pub fn submit_work(&self, item: WorkItem) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
self.work_queue.send(item)?;
Ok(())
}
pub fn get_results(&self) -> Vec<WorkResult> {
let mut results = Vec::new();
while let Ok(result) = self.result_receiver.try_recv() {
results.push(result);
}
results
}
pub fn process_batch(&self, items: Vec<WorkItem>) -> Vec<WorkResult> {
// Submit all work items
for item in items {
self.submit_work(item).unwrap();
}
// Collect results
let mut results = Vec::new();
let expected_count = items.len();
while results.len() < expected_count {
if let Ok(result) = self.result_receiver.recv() {
results.push(result);
}
}
results
}
}
// Async/await optimized processing
pub struct AsyncProcessor {
runtime: tokio::runtime::Runtime,
semaphore: std::sync::Arc<tokio::sync::Semaphore>,
}
impl AsyncProcessor {
pub fn new(max_concurrent: usize) -> Self {
let runtime = tokio::runtime::Builder::new_multi_thread()
.worker_threads(num_cpus::get())
.enable_all()
.build()
.unwrap();
Self {
runtime,
semaphore: std::sync::Arc::new(tokio::sync::Semaphore::new(max_concurrent)),
}
}
pub async fn process_concurrent<T, F, Fut>(&self, items: Vec<T>, processor: F) -> Vec<Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>>>
where
F: Fn(T) -> Fut + Send + Sync + 'static,
Fut: std::future::Future<Output = Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>>> + Send + 'static,
T: Send + 'static,
{
let semaphore = self.semaphore.clone();
let futures: Vec<_> = items.into_iter().map(|item| {
let semaphore = semaphore.clone();
async move {
let _permit = semaphore.acquire().await.unwrap();
processor(item).await
}
}).collect();
futures::future::join_all(futures).await
}
}
// Usage
let processor = ConcurrentProcessor::new(8);
let async_processor = AsyncProcessor::new(100);
// Process database queries concurrently
let queries = vec![
"SELECT * FROM users WHERE id = 1",
"SELECT * FROM products WHERE category = 'electronics'",
"SELECT COUNT(*) FROM orders WHERE status = 'pending'",
];
let work_items: Vec<WorkItem> = queries.into_iter().enumerate().map(|(i, query)| {
WorkItem {
id: i as u64,
operation: "database_query".to_string(),
data: serde_json::json!({ "query": query }),
priority: 1,
}
}).collect();
let results = processor.process_batch(work_items);
Caching Strategies
// Multi-level caching system
pub struct MultiLevelCache {
l1_cache: std::sync::Arc<tokio::sync::RwLock<lru::LruCache<String, CachedValue>>>,
l2_cache: std::sync::Arc<redis::Client>,
l3_cache: std::sync::Arc<Database>,
}#[derive(Clone)]
pub struct CachedValue {
pub data: serde_json::Value,
pub timestamp: std::time::Instant,
pub ttl: std::time::Duration,
}
impl MultiLevelCache {
pub fn new(l1_size: usize, redis_url: &str, database: Database) -> Self {
let l1_cache = std::sync::Arc::new(tokio::sync::RwLock::new(lru::LruCache::new(l1_size)));
let l2_cache = std::sync::Arc::new(redis::Client::open(redis_url).unwrap());
let l3_cache = std::sync::Arc::new(database);
Self {
l1_cache,
l2_cache,
l3_cache,
}
}
pub async fn get(&self, key: &str) -> Result<Option<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> {
// Check L1 cache first
if let Some(cached) = self.l1_cache.read().await.get(key) {
if cached.timestamp.elapsed() < cached.ttl {
return Ok(Some(cached.data.clone()));
}
}
// Check L2 cache (Redis)
if let Ok(Some(data)) = self.get_from_redis(key).await {
// Update L1 cache
let cached_value = CachedValue {
data: data.clone(),
timestamp: std::time::Instant::now(),
ttl: std::time::Duration::from_secs(300), // 5 minutes
};
self.l1_cache.write().await.put(key.to_string(), cached_value);
return Ok(Some(data));
}
// Check L3 cache (Database)
if let Ok(Some(data)) = self.get_from_database(key).await {
// Update L2 and L1 caches
self.set_in_redis(key, &data, 3600).await?; // 1 hour TTL
let cached_value = CachedValue {
data: data.clone(),
timestamp: std::time::Instant::now(),
ttl: std::time::Duration::from_secs(300),
};
self.l1_cache.write().await.put(key.to_string(), cached_value);
return Ok(Some(data));
}
Ok(None)
}
pub async fn set(&self, key: &str, value: &serde_json::Value, ttl: u64) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
// Set in all cache levels
let cached_value = CachedValue {
data: value.clone(),
timestamp: std::time::Instant::now(),
ttl: std::time::Duration::from_secs(ttl),
};
self.l1_cache.write().await.put(key.to_string(), cached_value);
self.set_in_redis(key, value, ttl).await?;
self.set_in_database(key, value).await?;
Ok(())
}
async fn get_from_redis(&self, key: &str) -> Result<Option<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> {
let mut conn = self.l2_cache.get_async_connection().await?;
let result: Option<String> = redis::cmd("GET").arg(key).query_async(&mut conn).await?;
match result {
Some(data) => Ok(Some(serde_json::from_str(&data)?)),
None => Ok(None),
}
}
async fn set_in_redis(&self, key: &str, value: &serde_json::Value, ttl: u64) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
let mut conn = self.l2_cache.get_async_connection().await?;
let data = serde_json::to_string(value)?;
redis::cmd("SETEX")
.arg(key)
.arg(ttl)
.arg(data)
.query_async(&mut conn)
.await?;
Ok(())
}
async fn get_from_database(&self, key: &str) -> Result<Option<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> {
let result = @db.table("cache")
.where("cache_key", key)
.where("expires_at", ">", @date.now())
.first()
.await?;
Ok(result.map(|row| row["cache_value"].clone()))
}
async fn set_in_database(&self, key: &str, value: &serde_json::Value) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
let expires_at = @date.add_hours(@date.now(), 24); // 24 hours TTL
@db.table("cache")
.upsert(&serde_json::json!({
"cache_key": key,
"cache_value": value,
"expires_at": expires_at,
"updated_at": @date.now()
}))
.await?;
Ok(())
}
}
// Usage with TuskLang
let cache = MultiLevelCache::new(1000, "redis://localhost:6379", database);
// Cache TuskLang configuration
let config = @config.load("app_config.tsk");
cache.set("app_config", &config, 3600).await?;
// Retrieve cached configuration
if let Some(cached_config) = cache.get("app_config").await? {
// Use cached configuration
let db_url = cached_config["database"]["url"].as_str().unwrap();
let api_key = cached_config["api"]["key"].as_str().unwrap();
}
Database Optimization
// Optimized database operations with TuskLang
pub struct OptimizedDatabase {
connection_pool: deadpool_postgres::Pool,
query_cache: std::sync::Arc<tokio::sync::RwLock<lru::LruCache<String, PreparedStatement>>>,
batch_size: usize,
}impl OptimizedDatabase {
pub fn new(pool: deadpool_postgres::Pool, batch_size: usize) -> Self {
Self {
connection_pool: pool,
query_cache: std::sync::Arc::new(tokio::sync::RwLock::new(lru::LruCache::new(100))),
batch_size,
}
}
pub async fn execute_batch(&self, queries: Vec<String>) -> Result<Vec<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> {
let mut results = Vec::new();
let batches: Vec<_> = queries.chunks(self.batch_size).collect();
for batch in batches {
let batch_results = self.execute_batch_internal(batch).await?;
results.extend(batch_results);
}
Ok(results)
}
async fn execute_batch_internal(&self, queries: &[String]) -> Result<Vec<serde_json::Value>, Box<dyn std::error::Error + Send + Sync>> {
let conn = self.connection_pool.get().await?;
let mut results = Vec::new();
for query in queries {
// Check query cache first
if let Some(stmt) = self.query_cache.read().await.get(query) {
let result = conn.execute(stmt, &[]).await?;
results.push(serde_json::to_value(result)?);
} else {
// Prepare and cache the statement
let stmt = conn.prepare(query).await?;
self.query_cache.write().await.put(query.to_string(), stmt.clone());
let result = conn.execute(&stmt, &[]).await?;
results.push(serde_json::to_value(result)?);
}
}
Ok(results)
}
pub async fn optimized_query(&self, query: &str, params: &[serde_json::Value]) -> Result<serde_json::Value, Box<dyn std::error::Error + Send + Sync>> {
// Use TuskLang query optimization
let optimized_query = @query.optimize(query)?;
let execution_plan = @query.analyze(&optimized_query)?;
@log.debug("Query execution plan", {
original_query = query,
optimized_query = &optimized_query,
execution_plan = &execution_plan,
});
// Execute with optimized parameters
let conn = self.connection_pool.get().await?;
let stmt = conn.prepare(&optimized_query).await?;
let result = conn.query(&stmt, ¶ms).await?;
Ok(serde_json::to_value(result)?)
}
pub async fn bulk_insert(&self, table: &str, data: Vec<serde_json::Value>) -> Result<u64, Box<dyn std::error::Error + Send + Sync>> {
if data.is_empty() {
return Ok(0);
}
let conn = self.connection_pool.get().await?;
let columns: Vec<_> = data[0].as_object().unwrap().keys().cloned().collect();
// Build bulk insert query
let placeholders: Vec<_> = (0..data.len()).map(|i| {
let row_placeholders: Vec<_> = (0..columns.len()).map(|j| format!("${}", i * columns.len() + j + 1)).collect();
format!("({})", row_placeholders.join(", "))
}).collect();
let query = format!(
"INSERT INTO {} ({}) VALUES {}",
table,
columns.join(", "),
placeholders.join(", ")
);
// Flatten parameters
let mut params = Vec::new();
for row in &data {
for column in &columns {
params.push(row[column].clone());
}
}
let stmt = conn.prepare(&query).await?;
let result = conn.execute(&stmt, ¶ms).await?;
Ok(result)
}
}
// Usage
let db = OptimizedDatabase::new(connection_pool, 1000);
// Optimized batch processing
let queries = vec![
"SELECT * FROM users WHERE status = 'active'".to_string(),
"SELECT COUNT(*) FROM orders WHERE created_at > NOW() - INTERVAL '1 day'".to_string(),
"SELECT product_id, SUM(quantity) FROM order_items GROUP BY product_id".to_string(),
];
let results = db.execute_batch(queries).await?;
// Bulk insert with TuskLang data
let user_data = @db.users.get_all()?;
let serialized_data: Vec<serde_json::Value> = user_data.into_iter().map(|user| {
serde_json::to_value(user).unwrap()
}).collect();
let inserted_count = db.bulk_insert("users_backup", serialized_data).await?;
Network Optimization
// Optimized HTTP client with connection pooling
pub struct OptimizedHttpClient {
client: reqwest::Client,
connection_pool: std::sync::Arc<tokio::sync::RwLock<lru::LruCache<String, reqwest::Client>>>,
rate_limiter: std::sync::Arc<RateLimiter>,
}impl OptimizedHttpClient {
pub fn new() -> Self {
let client = reqwest::Client::builder()
.pool_max_idle_per_host(10)
.pool_idle_timeout(std::time::Duration::from_secs(30))
.timeout(std::time::Duration::from_secs(30))
.build()
.unwrap();
Self {
client,
connection_pool: std::sync::Arc::new(tokio::sync::RwLock::new(lru::LruCache::new(50))),
rate_limiter: std::sync::Arc::new(RateLimiter::new(100, 1.0)), // 100 requests per second
}
}
pub async fn optimized_request(&self, method: &str, url: &str, body: Option<serde_json::Value>)
-> Result<reqwest::Response, Box<dyn std::error::Error + Send + Sync>> {
// Apply rate limiting
self.rate_limiter.acquire().await?;
// Use TuskLang HTTP optimization
let optimized_url = @http.optimize_url(url)?;
let optimized_headers = @http.get_optimized_headers(method, url)?;
let request = match method.to_uppercase().as_str() {
"GET" => self.client.get(&optimized_url),
"POST" => {
let mut req = self.client.post(&optimized_url);
if let Some(body_data) = body {
req = req.json(&body_data);
}
req
}
"PUT" => {
let mut req = self.client.put(&optimized_url);
if let Some(body_data) = body {
req = req.json(&body_data);
}
req
}
"DELETE" => self.client.delete(&optimized_url),
_ => return Err("Unsupported HTTP method".into()),
};
// Add optimized headers
let request = optimized_headers.iter().fold(request, |req, (key, value)| {
req.header(key, value)
});
let response = request.send().await?;
// Cache successful responses
if response.status().is_success() {
self.cache_response(&optimized_url, &response).await?;
}
Ok(response)
}
async fn cache_response(&self, url: &str, response: &reqwest::Response) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
if let Some(cache_control) = response.headers().get("cache-control") {
if cache_control.to_str()?.contains("max-age=") {
let body = response.bytes().await?;
@cache.set(url, &body, 3600).await?; // Cache for 1 hour
}
}
Ok(())
}
pub async fn batch_requests(&self, requests: Vec<HttpRequest>) -> Vec<Result<reqwest::Response, Box<dyn std::error::Error + Send + Sync>>> {
let futures: Vec<_> = requests.into_iter().map(|req| {
self.optimized_request(&req.method, &req.url, req.body)
}).collect();
futures::future::join_all(futures).await
}
}
pub struct HttpRequest {
pub method: String,
pub url: String,
pub body: Option<serde_json::Value>,
}
pub struct RateLimiter {
tokens: std::sync::atomic::AtomicU32,
max_tokens: u32,
refill_rate: f64,
last_refill: std::sync::Mutex<std::time::Instant>,
}
impl RateLimiter {
pub fn new(max_tokens: u32, refill_rate: f64) -> Self {
Self {
tokens: std::sync::atomic::AtomicU32::new(max_tokens),
max_tokens,
refill_rate,
last_refill: std::sync::Mutex::new(std::time::Instant::now()),
}
}
pub async fn acquire(&self) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
loop {
self.refill_tokens();
let current_tokens = self.tokens.load(std::sync::atomic::Ordering::Relaxed);
if current_tokens > 0 {
if self.tokens.compare_exchange(
current_tokens,
current_tokens - 1,
std::sync::atomic::Ordering::Relaxed,
std::sync::atomic::Ordering::Relaxed,
).is_ok() {
return Ok(());
}
}
tokio::time::sleep(std::time::Duration::from_millis(10)).await;
}
}
fn refill_tokens(&self) {
if let Ok(mut last_refill) = self.last_refill.lock() {
let now = std::time::Instant::now();
let elapsed = now.duration_since(*last_refill).as_secs_f64();
let tokens_to_add = (elapsed * self.refill_rate) as u32;
if tokens_to_add > 0 {
let current_tokens = self.tokens.load(std::sync::atomic::Ordering::Relaxed);
let new_tokens = std::cmp::min(current_tokens + tokens_to_add, self.max_tokens);
self.tokens.store(new_tokens, std::sync::atomic::Ordering::Relaxed);
*last_refill = now;
}
}
}
}
// Usage
let http_client = OptimizedHttpClient::new();
// Batch API requests
let requests = vec![
HttpRequest {
method: "GET".to_string(),
url: "https://api.example.com/users".to_string(),
body: None,
},
HttpRequest {
method: "POST".to_string(),
url: "https://api.example.com/users".to_string(),
body: Some(serde_json::json!({
"name": "John Doe",
"email": "john@example.com"
})),
},
];
let responses = http_client.batch_requests(requests).await;
Algorithm Optimization
// Optimized algorithms with TuskLang integration
pub struct OptimizedAlgorithms;impl OptimizedAlgorithms {
// Optimized sorting with custom comparison
pub fn optimized_sort<T, F>(items: &mut [T], compare: F) -> Result<(), Box<dyn std::error::Error + Send + Sync>>
where
F: Fn(&T, &T) -> std::cmp::Ordering + Send + Sync,
{
// Use TuskLang to determine optimal sorting algorithm
let algorithm = @algorithm.select_sorting(items.len(), &compare)?;
match algorithm.as_str() {
"quicksort" => Self::quicksort(items, &compare),
"mergesort" => Self::mergesort(items, &compare),
"heapsort" => Self::heapsort(items, &compare),
"timsort" => Self::timsort(items, &compare),
_ => items.sort_by(compare),
}
Ok(())
}
// Optimized search with indexing
pub fn optimized_search<T, F>(items: &[T], target: &T, compare: F) -> Option<usize>
where
F: Fn(&T, &T) -> std::cmp::Ordering + Send + Sync,
T: Clone,
{
// Use TuskLang to determine optimal search strategy
let strategy = @algorithm.select_search(items.len(), target)?;
match strategy.as_str() {
"binary_search" => items.binary_search_by(|item| compare(item, target)).ok(),
"linear_search" => items.iter().position(|item| compare(item, target) == std::cmp::Ordering::Equal),
"hash_search" => {
let hash_map: std::collections::HashMap<_, _> = items.iter().enumerate().collect();
hash_map.get(target).copied()
}
_ => items.binary_search_by(|item| compare(item, target)).ok(),
}
}
// Optimized data processing pipeline
pub async fn optimized_pipeline<T, U, F>(items: Vec<T>, processor: F, batch_size: usize)
-> Result<Vec<U>, Box<dyn std::error::Error + Send + Sync>>
where
F: Fn(T) -> U + Send + Sync + 'static,
T: Send + 'static,
U: Send + 'static,
{
// Use TuskLang to optimize pipeline
let pipeline_config = @pipeline.optimize(items.len(), batch_size)?;
let chunks: Vec<_> = items.chunks(pipeline_config.batch_size).collect();
let mut results = Vec::new();
for chunk in chunks {
let chunk_results: Vec<U> = chunk.iter().cloned().map(&processor).collect();
results.extend(chunk_results);
}
Ok(results)
}
// Optimized caching algorithm
pub fn optimized_cache<T>(&self, key: &str, generator: impl Fn() -> T, ttl: std::time::Duration) -> T
where
T: Clone + Send + Sync + 'static,
{
// Use TuskLang cache optimization
let cache_key = @cache.optimize_key(key)?;
let cache_strategy = @cache.select_strategy(&cache_key, ttl)?;
match cache_strategy.as_str() {
"lru" => self.lru_cache.get_or_insert_with(cache_key, generator),
"lfu" => self.lfu_cache.get_or_insert_with(cache_key, generator),
"ttl" => self.ttl_cache.get_or_insert_with(cache_key, generator, ttl),
_ => generator(),
}
}
}
// Usage
let algorithms = OptimizedAlgorithms;
// Optimized sorting
let mut data = vec![5, 2, 8, 1, 9, 3];
algorithms.optimized_sort(&mut data, |a, b| a.cmp(b))?;
// Optimized search
let target = 8;
if let Some(index) = algorithms.optimized_search(&data, &target, |a, b| a.cmp(b)) {
println!("Found {} at index {}", target, index);
}
// Optimized pipeline processing
let numbers = (1..1000).collect::<Vec<i32>>();
let processed = algorithms.optimized_pipeline(numbers, |n| n * 2, 100).await?;
This comprehensive guide covers Rust-specific performance optimization patterns, ensuring maximum performance while maintaining the power and flexibility of TuskLang's capabilities.